فهرست:
فصل اول. مقدمه.. 1
1-1- مقدمه 2
1-2- رفع ناسازگاری.. 3
1-3- سیستمهای تصمیمهمیار و سیستمهای تصمیمهمیار هوشمند.. 4
1-4- هدف از این پایاننامه. 6
1-5- نگاه کلی به فصول پایاننامه. 6
فصل دوم. روشهای رفع ناسازگاری... 7
2-1- مقدمه. 8
2-2- برخی استراتژیهای ساده برای رفع ناسازگاری.. 9
2-3- رفع ناسازگاری با استفاده از یک مقدار سودمندی.. 13
2-4- رفع ناسازگاری با استفاده از هزینههای تخمین زده شدهی تصادفی.. 15
2-4-1- تخمین امید ریاضی هزینه 17
2-4-2- برآورد بازگشتی 18
2-4-3- رفع ناسازگاری 19
2-5- رفع ناسازگاری با استفاده از برنامهنویسی خطی.. 21
2-6- رفع ناسازگاری با استفاده از تئوری بازی.. 22
2-7- رفع ناسازگاری با استفاده از مدل گراف... 23
2-8- رفع ناسازگاری با استفاده از روند سلسله مراتبی تحلیلی و بهبود آن.. 25
فصل سوم. سیستمهای تصمیمهمیار هوشمند... 31
3-1- مقدمه. 32
3-2- ویژگیهای سیستمهای تصمیمهمیار هوشمند.. 33
3-3- معرفی چند سیستم تصمیمهمیار هوشمند با ساختارهای متفاوت... 36
3-3-1- استفاده از الگوریتمهای تکاملی در ساختار IDSS 36
3-3-2- استفاده از عامل هوشمند در ساختار IDSS 38
3-3-3- استفاده از روشهای دادهکاوی و شبکههای عصبی مصنوعی در ساختار IDSS 40
3-3-4- استفاده از یک روش تصمیمگیری مبتنی بر منطق فازی در ساختار IDSS 46
3-3-5- استفاده از استنتاج مبتنی بر مورد در ساختار IDSS 51
3-3-6- استفاده از مولفههای مبتنی بر قانون در ساختار IDSS 55
فصل چهارم. بازیهای کامپیوتری استراتژیک بلادرنگ و سیستمهای هوشمند مرتبط با آنها 57
4-1- مقدمه. 58
4-2- ویژگیهای بازیهای استراتژیک بلادرنگ.... 59
4-3- مروری بر سیستمهای هوشمند مرتبط با بازیهای استراتژیک بلادرنگ.... 63
فصل پنجم. سیستم پیشنهادی... 71
5-1- مقدمه. 72
5-2- معرفی سیستم پیشنهادی.. 73
5-3- مولفههای اصلی سیستم پیشنهادی.. 74
5-4- روش رفع ناسازگاری بکار برده شده در سیستم پیشنهادی.. 77
فصل ششم. ارزیابی و نتایج... 80
فصل هفتم. نتیجهگیری و کارهای آینده. 89
فهرست منابع............................................................................................................... 92
منبع:
[1] Giarratano, J. C. (2003). “CLIPS 6.21 User's Guide”, International Thompson Publishing.
[2] Belavkin, R. V. (2003). “Conflict resolution by random estimated costs”, Proceedings of the 17th European Simulation Multiconference (c) SCS Europe, BVBA.
[3] Jones, G., Ritter, F. E., Wood, D. J. (2000). “Using a cognitive architecture to examine what develops”, Psychological Science, 11(2), 93–100.
[4] Belavkin, R. V., Ritter, F. E. (2003). “The use of entropy for analysis and control of cognitive models”, Proceedings of the Fifth International Conference on Cognitive Modelling (pp. 21–26). Bamberg, Germany: Universit¨ats–Verlag Bamberg.
[5] Belavkin, R. V. (2002). “On emotion, learning and uncertainty: A cognitive modelling approach”, PhD Thesis, The University of Nottingham, United Kingdom.
[6] Lo C., Wu C. (2005). “The Survey and Expansion on Quantitative Methods to Conflict Resolution”, Proceedings of the Third International Conference on Information Technology and Applications (ICITA’05), 268-271.
[7] Fang L., Hipel K. W., Kilgour D. M. (1993). Interactive Decision Making: The Graph Model for Conflict Resolution. New York: Wiley.
[8] Obeidi A., Hipel K.W., Kilgour D.M. (2005). “The Role of Emotions in Envisioning Outcomes in Conflict Analysis”, Journal of Group Decision and Negotiation, Vol. 14, No. 6: 481-500.
[9] Kilgour D. M., Hipel K. W. (2005). “The Graph Model for Conflict Resolution: Past, present, and future”, Group Decision and Negotiation, Vol. 14, No. 6: 441-460.
[10] Obeidi A., Hipel K. W., Kilgour D. M. (2005). “Perception and Emotion in the Graph Model for Conflict Resolution”, Intetnational Conference on Systems, Man and Cybermetics, ISIC.
[11] Saaty T. L. (2001). The Analytic Network Process: Decision Making with Dependence and Feedback. 2nd ed., Pittsburgh: RWS Publications.
[12] Gupta J., et al. (2006). Intelligent Decision-making Support Systems, Foundations, Applications and Challenges. Springer, 1st Edition, XXIV, 503p.105 illus.
[13] Li Y, Hipel K.W. (2007). “The Integration of a Multiple Criteria Preference Ranking
Approach for Conflict Resolution”, Intetnational Conference on Systems, Man and Cybernetics, ISIC.
[14] Phillips-Wren G., Forgionne G. (2002). “Evaluating web-based and real-time decision support systems”, Proceedings of the DSIAge Conference, 166-175.
[15] Han J. (1998). “Data Mining: An Overview from Databases Perspective”, Tutorial on the Pacific-Asia Conference in Knowledge Discovery and Data Mining (PKDD-98).
[16] Forgionne G., Mora M., Cervantes F., Gelman O. (2002). “I-DMSS: A conceptual architecture for the next generation of decision-making support systems in the internet age”, Proceedings of the DSIAge Conference, 154-165.
[17] Michalewicz Z., et al. (2005). “Case study: An intelligent decision-support system”, IEEE Intelligent Systems: putting AI into practice, 20 (4):44-49.
[18] Edwards JS., Duan Y., Robins PC. (2000). “An analysis of expert systems for business decision-making at different levels and in different roles”, European Journal of Information Systems, 9:36-46.
[19] Foster D., et al. (2005). “A Survey of Agent-Based Intelligent Decision Support Systems to Support Clinical Management and Research”, In: 1st Intl. Workshop on Multi-Agent Systems for Medicine, Computational Biology, and Bioinformatics.
[20] Turban E., Aronson J., Liang T. (2005). Decision Support Systems and Intelligent Systems.7th Edn., New Jersey: Pearson Prentice-Hall.
[21] Hayes-Roth F., Jacobstein N. (1994). “The state of knowledge-based systems”, Communications of the ACM, 37 (3); 27-39.
[22] Tecuci G., Kodratoff Y. (1995). Machine Learning and Knowledge Acquisition: Integrated Approaches. London UK: Academic Press.
[23] Azvine B., Azarmi N., Nauck D. (2000). Intelligent Systems and Soft Computing: Prospects, Tools and Applications. (Eds. Carbonell, J. and Siekmann, J.), Lecture Notes in Artificial Intelligence. Adastral Park, UK: Springer-Verlag.
[24] Sun R. (2001). “Artificial intelligence: connectionist and symbolic approaches”, In (Eds.Smelser, N.J. and Baltes, P.B.), International Encyclopedia of the Social and Behavioral Sciences, 783-789.
[25] Viademonte S. (2004). “A Hybrid Model for Intelligent Decision Support: Combining Data Mining And Artificial Neural Networks”, PhD. Thesis, Faculty of Information Technology, Monash University, Australia.
[26] Agrawal R., Imielinsk T., Swami A. (1993). “Mining association rules between sets of items in large databases”, ACM SIGMOD Conference on Management of Data (SIGMOD'93), New York, NY: ACM Press: 207-216.
[27] Machado RJ., Rocha AF. (1990). “The combinatorial neural network: a connectionist model for knowledge based systems”, Uncertainty in knowledge bases. Berlin, Germany: Springer Verlag.
[28] Leao BF., Rocha A. (1990). “Proposed methodology for knowledge acquisition: a study on congenital heart disease diagnosis”, Methods of Information in Medicine, 29: 30-40.
[29] El-Gayar OF., Leung PS. (2001). “A multiple criteria decision-making framework for regional aquaculture development”, European Journal of Operational Research, 133: 462-482
[30] Kirby N. (2010). Introduction to Game AI. Course Technology PTR.
[31] Proctor M., et al. (2008). “Drools Documentation”, JBoss Community.
[32] Buro M., Furtak T.M. (2004). “RTS games and real-time AI research” Proceedings of the Behavior Representation in Modeling and Simulation Conference (BRIMS), 51–58.
[33] Herz J.C., Macedonia M.R. (2002). “Computer games and the military: Two views. Defense Horizons”, Center for Technology and National Security Policy, National Defense University.
[34] Hsieh J.L., Sun Ch. T. (2008). “Building a Player Strategy Model by Analyzing Replays of Real-Time Strategy Games”, International Joint Conference on Neural Networks (IJCNN).
[35] Aha D., et al. (2005). “Learning to Win: Case-Based Plan Selection in a Real-Time Strategy Game”, Case-Based Reasoning Research and Development, 5-20.
[36] Ponsen M., Spronck P. (2004). “Improving adaptive game AI with evolutionary learning”, MSc. Thesis, 389-396.
[37] Buchanan B.G. (2005). “A (Very) Brief History of Artificial Intelligence” AI Magazine, Vol. 26: 53-60.
[38] Samuel A. L. (1995). “Some studies in machine learning using the game of checkers” Computers & thought, MIT Press: 71-105.
[39] Schaeffer J. (2001). “A Gamut of Games,” AI Magazine, vol. 22: 29-46.
[40] Laird J. (2001). “Using a computer game to develop advanced AI”, Computer, 34(7):70–75.
[41] Laird J., Newell A., Rosenbloom P.S. (1987). “SOAR: An architecture for general intelligence”, Artificial Intelligence Journal, 33(3):1–64.
[42] Atkin M.S. (1998). “AFS and HAC: Domain-general agent simulation and control”, In AAAI Workshop on Software Tools for Developing Agents.
[43] Atkin M.S., Cohen P.R. (1998). “Physical planning and dynamics”, In Working notes of the AAAI Fall Symposium on Distributed Continual Planning.
[44] Wikipedia, the free encyclopedia, “Stratagus”,
[Online]. . [12 Sept 2011].
[45] Spronck P., Sprinkhuizen-Kuyper I., Postma E. (2004). “Online Adaptation of
Game Opponent AI in Theory and Practice”, Proceedings of the 4th International
Conference on Intelligent Games and Simulation (GAME-ON 2004), 93-100.
[46] Wikipedia, the free encyclopedia, “Age of Empires III”,
[Online]. . [10 May 2011].
[47] Hicks R. C. (2007). “The no inference engine theory — Performing conflict resolution during development”, Decision Support Systems, Vol. 43: 435-444.
[48] Simon H.A. (1997). Administrative behavior: a study of Decision-Making process in Administrative Organizations. New York: Free Press.
[49] Shim J.P., et al. (2002). “Past, present and future of decision support technology” Decision Support Systems, Vol. 33:111-126.
[50] Tozour P. (2002). The Perils of AI Scripting. AI Game Programming Wisdom (ed. S. Rabin), Charles River Media. 541-547.
[51] Holsapple CW., Whinston AB. (1996). Decision Support Systems-A Knowledge-Based Approach, West Publishing Company.
[52] Woodcock, S. (2003). “AI RoundTable Moderator’s Report 2003”,
[online]. .
[53] Sweetser P. (2002). “Current AI in Games: A review”, Australian Journal of Intelligent Information Processing Systems, Scool of ITEE, University of Queensland.