فهرست:
فصل اول : مقدمه
2
مقدمه
7
روباتهای انساننما
10
روبوکاپ، انگیزهها و اهداف
13
نرم افزارهای شبیهسازی و مدل روبات
13
1-4-1- شبیهسازی
14
1-4-2- مدل روبات
15
1-4-3- کد پایه
18
راه رفتن روبات انساننما از بغل
19
اهداف
فصل دوم: مروری بر تحقیقات پیشین و روشهای به کار رفته در تحلیل حرکت روبات
21
2-1- مقدمه
22
2-2- تعادل روبات ونقطه گشتاور صفر
25
2-3- حرکتشناسی
27
2-3-1- حرکتشناسی مستقیم
27
2-3-2- حرکتشناسی معکوس
31
2-4- استفاده از سریهای فوریه در تحلیل حرکت روبات
34
2-4-1- بهینهسازی پارامترهای سری فوریه به کمک الگوریتم ژنتیک
37
2-4-2- بهینهسازی پارامترهای سری فوریه به کمک الگوریتم ازدحام ذرات
فصل سوم: طرح پیشنهادی
42
3-1- مقدمه
42
3-2- روبات انساننمای نائو و تحلیل حرکت آن
45
3-3- استفاده از حرکتشناسی در راه رفتن از بغل
46
3-3-1- حرکتشناسی مستقیم
50
3-3-2- حرکتشناسی معکوس
52
3-4- استفاده از اتوماتای یادگیر به منظور راه رفتن روبات
53
3-4-1- روباتهای افزونه
54
3-4-2- اتوماتاهای یادگیر
55
3-4-2-1- اتوماتای یادگیر با ساختار ثابت
58
3-4-2-2- اتوماتای یادگیر با ساختار متغیر
60
3-4-3- روش پیشنهادی در راه رفتن روبات نائو
فصل چهارم: آزمایشها و نتایج
70
4-1- مقدمه
71
4-2- راه رفتن مستقیم
74
4-3- راه رفتن از بغل
79
4-4 تاثیر تعداد مفاصل مورد استفاده در همگرایی سرعت و تعادل روبات
فصل پنجم: نتیجهگیری و مطالعات آینده
85
5-1- جمعبندی
86
5-2- مطالعات آینده
فهرست منابع
منبع:
[1] J.Or. ," A hybrid CPG-ZMP controller for the real-time balance of a simulated flexible spine humanoid robot", journalIEEE Transactions on Systems, Man, and Cybernetics 2009.39:p.14
[2] B. stephens, “ control of full body humanoid push recovery using simple models” , ph.d thesis proposal2009
[3] T.Kanda, T.Miyashita, T.Osada, Y.Haikawa and H.Ishiguro., “Analysis of humanoid appearances in human-robot interaction.” ,Intelligent Robots and Systems,. IEEE/RSJ International Conference.2008.24:p.11.
[4] S.Haddadin , t.laue, u.frese ,g.hirzinger, "the read to robocup 2050" ieee robotics and automation magazine 2002.p:37-64.
[5] R.De boer , j.Kok ,"The Incremental Development of a Synthetic Multi-Agent System" The UvA Trilearn 2001 Robotic Soccer Simulation Team, master thesis, UVA 2002.
[6] H.Kitano, M.Asada, Y.Kuniyoshi, I.Noda, E.Osawa."RoboCup: The Robot World Cup Initiative", In proceedings of the Firts National Conference on Autonomous Agents,1997.
[7] http://www.robocup.org/
[8] J. Boedecker , “Humanoid Robot Simulation and Walking Behaviour Development in the Spark Simulator Framework” , Artificial Intelligence Research University of Koblenz, April 2005.
[9] N. Shafii, et.al “A truncated fourier series with genetic algorithm for the control of biped locomotion” Advanced Intelligent Mechatronics AIM 2009 IEEE/ASME International conference, pp. 1781-1785, 2009.
[10]M Vukobratovic, D Juricic ,"contribution to the synthesis of biped gait" , IEEE Transactions on Biomedical Engineering,Vol.BME-16,pp.1-6,1969
[11]M. H. Raibert, "Legged Robots That Balance", Cambridge, MA: MIT Press, 1986.
[12]Q.Li, A.Takanishi, I.Kato, "A biped walking robot having a ZMP measurement system using universal force-moment sensors", IEEE/RSJ Int.Workshop on intelligent robots and systems.1991
[13]Q.Huang, K.Yokoi, S.Kajita, K.Kaneko, H.Arai, N.Koyachi, K.Tanie "Planning Walking Patterns for a Biped Robot" , IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 3, JUNE 2001
[14]L.Yang , C.M.Chew ,T.Zielinska , A.N.Poo ,"A uniform biped gait generator with offline optimization and online adjustable parameters" , Journal Robotica archive V.25 ,Pages 549-565 , Cambridge University Press New York USA, 2007
[15]saeed abdolshah
[16] Y.Kambayashi, M.Takimoto, Y.Kodama, "Controlling biped walking robots using genetic algorithms in mobile agent environment", Computational Cybernetics, 2005. ICCC 2005 ,IEEE 3rd International Conference on, pp.29-34 ,April 2005.
[17] Robotic manupulation book
[18] J. J. Craig “ Introduction to Robotics Mechanics and Control” 3rd Edition ,Pearson Education, Inc.2005.
[19]H.Geyer, A.Seyfarth, R.Blickhan2, "Compliant leg behaviour explains basic dynamics of walking and running", Proc.R.Lond.B ,vol.237, pp.2861-2867,2006.
[20]E.R.Westervelt,J.W.Grizzle,D.E. Koditschek, "Hybrid zero dynamics of planar biped walkers", IEEE Transactions on Automatic Control, vol.48, pp.42-56, Jan.2003.
[21]A.Ben-Israel and T.N.E Greville, Generalized Inverse: Theory and Applications. New York: Springer-verlag,2003.
[22]C.L.Shih, "The Ddynamics and control of a biped walking robot with seven degrees of freedom", ASME Journal of Dynamic Systems, Measurement, and Control vol.118,no.4,pp.683-690,1996
[23]W.Zhu, Y.Wang and Sh.Zhou ,"Gait Planning and Simulation of Lateral Motion for ROBONOVA-1 Robot",Proceedings of the 8th World Congress on Intelligent Control and Automation, China, July 2010.
[24]M.Taher khorsandi, B.Miripour-Fard and A.Bagheri ,"Optimal Tracking Control of a Biped Robot Walking in the Lateral Plane",International Symposium on Innovations in Intelligent Systems and Applications,2011
[25]M.Ogino, I.Tsukinoki, K.Hosoda and M.Asada, "Controlling Lateral Stepping of a Biped Robot by Swinging Torso Toward Energy Efficient Walking",Proceedlngs of 1EEE/RSJ International Conference on Intelligent Robots and Systems ,Japan, Septsmber 2004
[26]L. Yang, C.M. Chew, A.N. Poo, "Adjustable Bipedal Gait Generation using Genetic Algourithm Optimized fourier Series Furmulation", In :Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4435-4440, Oct. 2006.
[27]L. Yang, C.M. Chew, T. Zielinska, A.N. Poo, “A Uniform Bipedal Gait Generator with Offline Optimization and Online Adjustable Parameters”, Robotica 2007, Cambridge University Press, United Kingdom, Vol. 25, pp. 549-565,2007.
[28]P. K. Schot, M. J. Decker, "The force driven harmonic oscillator model accurately predicts the preferred stride frequency for backward walking", Human movement science 1998, Vol. 17, pp. 67-76, 1995.
[29]D.H.Kim, A.Abraham, J.H.Cho, "A hybrid genetic algorithm and bacterial foraging approach for global optimization", Information science 177,pp.3918-3937,2007.
[30]V.Gazi, K.M.Passino ,"Stability analysis of social foraging swarms", IEEE Transactions on Systems, Man and Cybernetics-part B34(1),pp.539-557,2004.
[31]M.Dorigo, V.Maniezzo,A.colorni,"The ant system: optimization by acolony of cooperating agents", IEEE Transactions on Systems,Man and Cybernetics-Part B 26(1), pp.29-41,1996
[32]J.H.Holland, "Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence", University of Michigan Press, Ann Arbor,1975.
[33]D. E. Goldberg, "Genetic Algorithms in Search, Optimiza- as amotion/force control problem", J. Dyn. Syst. Meas.tion and Machine Learning, Addison-Wesley, Reading, Control Trans. ASME, Vol. 114, pp. 660–665, 1992.
[34]J.Kennedy, R.Eberhart, "Particle swarm optimization" Proceedings of the IEEE international conference on neural networks,Australia,1995.
[35]J. Kennedy and R. Eberhart and Y. Shi, "Swarm Intelligence", Morgan Kaufmann Academic Press, 2001.
[36]A.B. Hashemi, M.R. Meybodi,"A note on the learning automata based algorithms for adaptive parameter selection in PSO", applied soft computing,V.11,issue.1,p.689-705,january 2011.
[37]M.Chun, S.Yong and Y.Xiang,"A swarm-inspired projection algorithm ",journal of pattern recognition,V.42, Issue.11,P.2764-2786, 2009.
[38]N.Shafii, S.Aslani, O.Mohamad Nezami, S.Shiry , "Evolution of Biped Walking Using Truncated Fourier Series and Particle Swarm Optimization",RoboCup, Vol.5949,Springer,p.344-354, 2009.
[39]http://simspark.sourceforge.net/wiki/index.php/Soccer_Simulation
[40]J.Boedecker,K.Dorer,M.Rollmann,Y.Xu,F.Xue,M.Buchta,H.Vatankhah,"SimSpark User's Manual Version 1.2", january 2010
[41]R. Koker, C. Oz, T. Cakar, H. Ekiz, "A Study of Neural Network based Inverse Kinematics Solution for a three-joint Robot ", Robotics and Autonomous Systems, vol 49, Issues 3-4, p.227-234, 2004.
[42]Y. Kuroe, Y. Nakai, T. Mori, " A New Neural Network Learning of Inverse Kinematics of Robot Manipulator",International Conference on Neural Networks, vol V, p.2715- 2720, Orlando, Florida, 1994.
[43]F. Pourboghrat, "Neural Networks for Learning Inverse-Kinematics of Redundant Manipulators", 1990.
[44]S. Tejomurtula, S. Kak, "Inverse Kinematics in Robotics using Neural Networks", Information Sciences, 116, p.p. 147-164, 1990.
[45]K. A. Buckley, S. H. Hopkins, B. C. H. Turton; "Solution of Inverse Kinematics Problems of a Highly Kinematically Redundant Manipulator using Genetic Algorithms"; Genetic Algorithms in Engineering Systems: Innovations and Applications, p. 264-269, 1997.
[46]J. Parker, A. Khoogar, D. Goldberg; "Inverse Kinematics of Redundant Robots using Genetic Algorithms"; Proceeding of IEEE International Conference on Robotics and Automation, pp.271, 1989.
[47]A.Motavalian, M.R.Meybodi and S.Shiri, "Solving Inverse Kinematics Problem in Redundant Robots Using Learning Automata", Proceedings of 11th Annual CSI Computer Conference of Iran, Fundamental Science Research Center (IPM), Computer Science Research Lab., Tehran, Iran, p. 679-684, January, 2006
[48]K. S. Narendra, M. A. L. Thathachar, "Learning Automata: An Introduction", Prentice-Hall Inc., 1989
[49]P. Mars, J. R. Chen, and R. Nambir, "Learning Algorithms: Theory and Applications, in Signal Processing", Control and Communications, CRC Press, Inc., p.5-24, 1996.
[50]M. R. Meybodi and S. Lakshmivarahan, "e -optimality of a general class of absorbing barrier learning algorithms", Information Sciences, vol. 28, p. 1-20, 1982.
[51]M. R. Meybodi and S. Lakshmivarahan, "On a class of learning algorithms which have a symmetric behavior under success and failure," Springer-Verlag Lecture Notes in Statistics, p. 145-155, 1984.