فهرست:
چکیده
مقدمه
فصل اول : مروری بر رایانش ابری و مفاهیم مرتبط با آن
1-1 مفهوم رایانش ابری
1-2 ویژگیهای محاسبات ابری
1-3 مدل سیستم
1-4 مدلهای پیادهسازی
1-5 تفاوتها و شباهتهای ابر با سایر سیستمهای محاسباتی
1-6 مزایای رایانش ابری
1-7 مشکلات و چالشهای موجود در رایانش ابری
1-8 خلاصهی فصل
فصل دوم : هزینهی تأمین منابع در ابر و پژوهشهای صورت گرفته در زمینهی کاهش آن
2-1 بیان مسئله : هزینهی تأمین منابع در ابر
2-2 پژوهشهای صورت گرفته در زمینهی کاهش هزینهی تأمین منابع در ابر
2-3 خلاصهی فصل
فصل سوم : مروری بر روشها و الگوریتمهای به کار رفته در روش پیشنهادی
3-1 شبکهی عصبی پرسپترون چند لایه با روش یادگیری پسانتشار خطا
3-2 الگوریتم رقابت استعماری
3-3 خلاصهی فصل
فصل چهارم : معرفی و شبیهسازی روش پیشنهادی
4-1 معرفی مدل
4-2 الگوریتم پیشبینی درخواست بعدی کاربر
4-3 الگوریتم بهینهسازی هزینهی تأمین منابع
4-4 ارزیابی روش پیشنهادی و مقایسه با سایر روشها با استفاده از نتایج حاصل از شبیهسازی
فصل پنجم : نتیجهگیری
5-1 نتیجهگیری و کارهای آتی
منابع
چکیده انگلیسی
منبع:
[1] “VMWare: Virtual Infrastructure Software.” [Online].
Available: http://www.vmware.com.
[2] R. Buyya, J. Broberg, and A. Goscinski, Cloud Computing Principles and Paradigms, Wiley, 2011, pp. 103–106.
[3] “Google App Engine.” [Online].
Available: http://code.google.com/appengine.
[4] “Microsoft Azure Cloud Platform.” [Online].
Available: http://www.microsoft.com/windowsazure.
[5] “IBM Blue Cloud Project.” [Online].
Available: http://www.ibm.com/ibm/cloud.
[6] B. F. Cooper, E. Baldeschwieler, R. Fonseca, J. J. Kistler, P. P. S. Narayan, C. Neerdaels, T. Negrin, R. Ramakrishnan, A. Silberstein, U. Srivastava, and R. Stata, “Building a Cloud for Yahoo!,” Data Engineering, vol. 32, no. 1, pp. 1–8, 2009.
[7] S. Garfinkel and H. Abelson, Architects of the Information Society: Thirty-Five Years of the Laboratory for Computer Science at MIT. The MIT Press, pp. 86, 1999.
[8] D. Parkhill, The Challenge of the Computer Utility. Addison-Wesley, 1966.
[9] C. Metz, “The Latest in Virtual Private Networks: Part I,” IEEE Internet Computing, vol. 7, no. 1, pp. 87–91, 2003.
[10] “Gartner Urges IT and Business Leaders to Wake up to IT’s Energy Crisis,” Gartner Press Release, 2006. [Online].Available: http://www.gartner.com/it/
[11] P. Mell and T. Grance, “The NIST Definition of Cloud Computing: Version 15,” NIST Special Publication, 2009. [Online]. Available: http://csrc.nist.gov/groups/SNS/cloud-computing.
[12] B. Sosinsky, Cloud Computing Bible. Wiley, 2011.
[13] T. Dillion, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), Perth, Australia , 2010.
[14] R. Krutz and R. D. Vines, Cloud Security, A Comprehensive Guide to Secure Cloud Computing. Wiley, 2010.
[15] J. M. Myerson, “Cloud Computing Versus Grid Computing.” IBM Corp., International Technical Support Organization, pp. 1–9, 2009.
[16] J. Governor, D. Hinchcliffe, and D. Nickull, Web 2.0 Architectures: What Entrepreneurs and Information Architects Need to Know, 1st ed. O’Reilly, pp. 276, 2009.
[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,” in Proceedings of the 2nd conference on Symposium on Networked Systems Design & Implementation, 2005, pp. 273–286.
[18] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato, Optimal Virtual Machine Placement across Multiple Cloud Providers, IEEE Asia-Pacific Services Computing Conference (IEEE APSCC) ,2009.
[19] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato, Robust Cloud Resource Provisioning for Cloud Computing Environments, IEEE International Conference on Service-Oriented Computing and Applications (SOCA), 2010 .
[20] Sivadon Chaisiri, Rakpong Kaewpuang, Bu-Sung Lee, and Dusit Niyato, Cost Minimization for Provisioning Virtual Servers in Amazon Elastic Compute Cloud, 19th Annual IEEE International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems, 1526-7539/, DOI 10.1109/MASCOTS,2011.
[21] Stephane Genaud and Julien Gossa, Cost-wait Trade-offs in Client-side Resource Provisioning with Elastic Clouds, IEEE 4th International Conference on Cloud Computing, 978-0-7695-4460-1/11, DOI 10.1109/CLOUD, 2011
[22] Seoyoung Kim, Jung-in Koh, Yoonhee Kim, A Science Cloud Resource Provisioning Model using Statistical Analysis of Job History, Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing, 978-0-7695-4612-4/11 DOI 10.1109/DASC.2011.134, 2011
[23] Rajkumar Buyya, Saurabh Kumar Garg, and William Voorsluys, Provisioning Spot Market Cloud Resources to Create Cost-effective Virtual Clusters, 11th International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP-11);Lecture Notes in Computer Science, Vol. 7016, DOI: 10.1007/978-3-642-24650-0_34 , 2011
[24] Ching Chuen Teck Mark , Dusit Niyato and Tham Chen-Khong, Evolutionary Optimal Virtual Machine Placement and Demand Forecaster for Cloud Computing, IEEE International Conference on Advanced Information Networking and Applications, DOI 10.1109/AINA.2011.50, 2011
[25] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato, Optimization of Resource Provisioning Cost in Cloud Computing, IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2012
[26] Ben Krose, Patrick van der Smagt, An introduction to Neural Networks, The University of Amsterdam, Eighth edition November 1996
[27] Yu Hen Hu, Jenq-Neng Hwang, Handbook of neural network signal processing, ISBN 0-8493-2359-2, 2002 by CRC Press LLC
[28] James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications, and Programming Techniques, ISBN 0-201-51376-5, Addison-Wesley Publishing Company, QA76.87.F74 1991
[29] Simon Haykin, Neural Networks – A Comprehensive Foundation, Ninth edition, Published by Pearson Education, ISBN 81-7808-300-0,2005
[30] Kok Keong Teo, Lipo Wang, and Zhiping Lin, Wavelet Packet Multi-layer Perceptron for Chaotic Time Series Prediction: Effects of Weight InitializationV.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 310–317, Springer-Verlag Berlin Heidelberg ,2001
[31] Patterson D W, Chan K H, Tan C M. 1993, Time Series Forecasting with neural nets: a comparative study. Proc. the international conference on neural network applictions to signal processing. NNASP Singapore pp 269-274, 1993.
[32] A. Weigend and G. Gershenfeld (eds.), Time series prediction: Forecasting the future and understanding the past, Addison-Wesley, Reading, 1994.
[33] N.Davey, S.P.Hunt, R.J.Frank, Time Series Prediction and Neural Networks, Proceedings of the International Workshop on Applications of Neural Networks to Telecommuncations 3. pp. 157-164, 1998.
[34] Esmaeil Atashpaz Gargari, Caro Loucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialisticcompetition, IEEE Congress on Evolutionary Computation (CEC 2007)
[35] Yang Zhang, Yong Wang, Cheng Peng, Improved Imperialist Competitive Algorithm for Constrained Optimization, International Forum on Computer Science-Technology and Applications, DOI 10.1109/IFCSTA.2009.57, 2009 IEEE
[36] A. Kaveh and S. Talatahari, IMPERIALIST COMPETITIVE ALGORITHM FOR ENGINEERING DESIGN PROBLEMS, JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 11, NO. 6 ,2010
[37] Taher Niknam, Elahe TaherianFard, NargesPourjafarian, AlirezaRousta, An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering, Engineering Applications of Artificial Intelligence 24 (2011) 306–317, Elsevier Ltd, doi:10.1016/j.engappai,2010
[38] J. Behnamian, M. Zandieh, A discrete colonial competitive algorithm for hybrid flowshop scheduling to minimize earliness and quadratic tardiness penalties, Expert Systems with Applications 38 (2011) 14490–14498, doi:10.1016/j.eswa,2011