فهرست:
چکیده...................................................................................................................................... 1
فصل اول.......................................................................................................... 2
1-1-مقدمه............................................................................................................................... 3
1-2-تعریف مسئله..................................................................................................................... 4
1-3-اهمیت و ضرورت تحقیق....................................................................................................... 5
1-4-شیوه پژوهش..................................................................................................................... 8
1-5-چارچوب پایاننامه.............................................................................................................. 8
مراجع..................................................................................................................................... 10
فصل دوم:....................................................................................................... 11
2-1-مقدمه............................................................................................................................. 12
2-2-مروی بر کارهای انجام شده................................................................................................. 12
مراجع..................................................................................................................................... 21
فصل سوم:...................................................................................................... 24
3-1-مقدمه............................................................................................................................. 25
3-2-مراحل وب کاوی................................................................................................................ 26
3-2-1-انواع وبکاوی.......................................................................................................... 27
3-3-شخصیسازی وب.............................................................................................................. 28
3-3-1-دلایل نیاز به شخصیسازی وب.................................................................................... 28
3-3-2-مراحل شخصی سازی وب........................................................................................... 29
3-3-2-1-جمعآوری داده................................................................................................ 30
3-3-2-2-پردازش داده................................................................................................... 31
3-3-2-3-کشف الگو....................................................................................................... 31
3-3-2-4-تحلیل دانش................................................................................................... 31
3-3-3-تکنیک های مدلسازی کاربر در شخصیسازی وب.......................................................... 31
3-3-3-1-تکنیک tf-idf................................................................................................. 32
3-3-3-2-تکنیک متا مدل و ابزار OLAP........................................................................... 32
3-3-3-3-تکنیک براساس محتوای وب.............................................................................. 33
3-3-3-4-تکنیک براساس فراهم کردن دادههای موثر (ODP)................................................ 34
3-3-3-5-شخصیسازی وب با استفاده از روشهای ترکیبی................................................... 34
3-3-3-6-شخصیسازی وب براساس الگوریتم استقرایی و تکنولوژی tf-idf............................... 35
3-3-3-7-شخصیسازی وب با استفاده از کندوکاو الگوی ترتیبی و درخت الگو........................... 35
3-4-خوشهبندی برای شخصیسازی وب...................................................................................... 35
3-4-1-خوشهبندی فازی...................................................................................................... 36
3-4-1-1-الگوریتم پایهای خوشهبندی فازی....................................................................... 36
3-4-1-2-الگوریتم فازی کا-مینز..................................................................................... 36
3-4-1-3-خوشهبندی صفحات وب با استفاده از خوشهبندی فازی k-means............................ 37
3-4-2-الگوریتم ژنتیک....................................................................................................... 39
3-4-2-1-بهینهسازی خوشهبندی فازی با استفاده از الگوریتم ژنتیک..................................... 40
3-4-3-روش پیشنهادی در این تحقیق.................................................................................... 42
3-4-4-شمای کلی سیستم پیشنهادی.................................................................................... 42
3-4-5-مثالی از سیستم پیشنهادی........................................................................................ 43
3-4-6-شبه کد روش پیشنهادی............................................................................................ 50
3-5-جمعبندی........................................................................................................................ 51
مراجع..................................................................................................................................... 53
فصل چهارم:.................................................................................................... 55
4-1-مقدمه............................................................................................................................. 56
4-2-مجموعه دادهها................................................................................................................. 56
4-2-1-دیتاست YANDEX................................................................................................. 57
4-2-1-1-پیش پردازش انجام شده با مجموعه دادههای خام قبل از انتشار................................ 57
4-3-پارامترهای ارزیابی............................................................................................................ 60
4-4-آزمایشات انجام شده......................................................................................................... 61
4-4-1-سخت افزار مورد استفاده........................................................................................... 62
4-4-2-نتایج آزمایشات....................................................................................................... 62
4-5-جمعبندی........................................................................................................................ 64
مراجع:.................................................................................................................................... 65
فصل پنجم:..................................................................................................... 66
5-1-مقدمه............................................................................................................................. 67
5-2-نتایج و دستاوردهای پروژه.................................................................................................. 68
5-3-پیشنهادات...................................................................................................................... 68
مراجع..................................................................................................................................... 70
منبع:
[1]. Anand, S. S., & Mobasher, B. (2003, August). Intelligent techniques for web personalization. In Proceedings of the 2003 international conference on Intelligent Techniques for Web Personalization (pp. 1-36). Springer-Verlag.
[2]. Baeza-Yates, R. (2004, January). Web mining in search engines. In Proceedings of the 27th Australasian conference on Computer science-Volume 26 (pp. 3-4). Australian Computer Society, Inc..
[3]. Bharat, K., Chang, B. W., Henzinger, M., & Ruhl, M. (2001). Who links to whom: Mining linkage between web sites. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on (pp. 51-58). IEEE.
[4]. Chakrabarti, S. (2000). Data mining for hypertext: A tutorial survey. ACM SIGKDD Explorations Newsletter, 1(2), 1-11.
[5]. Chakrabarti, S., Dom, B. E., Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A., & Kleinberg, J. (1999). Mining the Web's link structure. Computer, 32(8), 60-67.
[6]. Devi, B. N., Devi, Y. R., Rani, B. P., & Rao, R. R. (2012). Design and Implementation of Web Usage Mining Intelligent System in the Field of e-commerce. Procedia Engineering, 30, 20-27.
[7]. Eirinaki, M., & Vazirgiannis, M. (2003). Web mining for web personalization. ACM Transactions on Internet Technology (TOIT), 3(1), 1-27.
[8]. Varghese, N. M., & John, J. (2012, October). Cluster optimization for enhanced web usage mining using fuzzy logic. In Information and Communication Technologies (WICT), 2012 World Congress on (pp. 948-952). IEEE.
[1]. Acharyya, S., & Ghosh, J. (2003, August). Context-sensitive modeling of web-surfing behaviour using concept trees. In Proc. of the WebKDD Workshop on Web Mining and Web Usage Analysis (pp. 1-8).
[2]. Aghabozorgi, S. R., & Wah, T. Y. (2009, December). Using incremental fuzzy clustering to web usage mining. In Soft Computing and Pattern Recognition, 2009. SOCPAR'09. International Conference of (pp. 653-658). IEEE.
[3]. Baraglia, R., & Palmerini, P. (2002, April). Suggest: A web usage mining system. In Information Technology: Coding and Computing, 2002. Proceedings. International Conference on (pp. 282-287). IEEE.Britos, P., Martinelli, D., Merlino, H., & García-Martínez, R. (2007). Web usage mining using self organized maps. IJCSNS, 7(6), 45.
[4]. Banerjee, S., & Pedersen, T. (2003, August). Extended gloss overlaps as a measure of semantic relatedness. In IJCAI (Vol. 3, pp. 805-810).
[5]. Dai, H. K., & Mobasher, B. (2002). Using ontologies to discover domain-level web usage profiles. Semantic Web Mining, 35.
[6]. Eirinaki, M., Vazirgiannis, M., & Varlamis, I. (2003, August). SEWeP: using site semantics and a taxonomy to enhance the Web personalization process. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 99-108). ACM.
[7]. Etminani, K., Akbarzadeh-Totonchi, M. R., & Yanehsari, N. R. (2009). Web Usage Mining: users' navigational patterns extraction from web logs using ant-based clustering method. In IFSA/EUSFLAT Conf. (pp. 396-401).
[8]. Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15.
[9]. Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An electronic lexical database, 49(2), 265-283.
[10]. Lieberman, H., Van Dyke, N., & Vivacqua, A. (1999). Let's browse: a collaborative browsing agent. Knowledge-Based Systems, 12(8), 427-431.
[11]. Magnini, B., & Strapparava, C. (2004). User modelling for news web sites with word sense based techniques. User Modeling and User-Adapted Interaction,14(2-3), 239-257.
[12]. Maratea, A., & Petrosino, A. (2009, November). An heuristic approach to page recommendation in web usage mining. In Intelligent Systems Design and Applications, 2009. ISDA'09. Ninth International Conference on (pp. 1043-1048). IEEE.
[13]. Markov, Z., & Larose, D. T. (2007). Data mining the Web: uncovering patterns in Web content, structure, and usage. John Wiley & Sons.
[14]. Masseglia, F., Poncelet, P., & Cicchetti, R. (2000). An efficient algorithm for web usage mining. Networking and Information Systems Journal, 2(5/6), 571-604.
[15]. Minio, M., & Tasso, C. (1996, January). User modeling for information filtering on internet services: Exploiting an extended version of the umt shell. In UM96 Workshop on User Modeling for Information Filtering on the WWW (pp. 2-5).
[16]. Miranda, T., Claypool, M., Gokhale, A., Mir, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. In In Proceedings of ACM SIGIR Workshop on Recommender Systems.
[17]. Mobasher, B., Cooley, R., & Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communications of the ACM, 43(8), 142-151.
[18]. Mobasher, B., Dai, H., Luo, T., Sun, Y., & Zhu, J. (2000). Integrating web usage and content mining for more effective personalization. In Electronic commerce and web technologies (pp. 165-176). Springer Berlin Heidelberg.
[19]. Nasraoui, O., Frigui, H., Krishnapuram, R., & Joshi, A. (2000). Extracting web user profiles using relational competitive fuzzy clustering. International Journal on Artificial Intelligence Tools, 9(04), 509-526.
[20]. Nina, S. P., Rahman, M., Bhuiyan, K. I., & Ahmed, K. E. U. (2009, November). Pattern discovery of web usage mining. In Computer Technology and Development, 2009. ICCTD'09. International Conference on (Vol. 1, pp. 499-503). IEEE.
[21]. Pamnani, R., & Chawan, P. (2010). Web Usage Mining: A research area in Web mining. Proceedings of ISCET, 73-77.
[22]. Pani, S. K., Panigrahy, L., Sankar, V. H., Ratha, B. K., Mandal, A. K., & Padhi, S. K. (2011). Web usage mining: a survey on pattern extraction from web logs. International Journal of Instrumentation, Control & Automation (IJICA), 1(1), 15-23.
[23]. Peng, X., Cao, Y., & Niu, Z. (2008, December). Mining Web Access Log for the Personalization Recommendation. In MultiMedia and Information Technology, 2008. MMIT'08. International Conference on (pp. 172-175). IEEE.
[24]. Shinde, S. K., & Kulkarni, U. V. (2008, December). A new approach for on line recommender system in web usage mining. In Advanced Computer Theory and Engineering, 2008. ICACTE'08. International Conference on (pp. 973-977). IEEE.
[25]. Sujatha, N., & Iyakutty, K. (2010). Refinement of Web usage Data Clustering from K-means with Genetic Algorithm. European Journal of Scientific Research, 42(3), 478-490.
[26]. Suryavanshi, B. S., Shiri, N., & Mudur, S. P. (2006, June). Analysis of Fuzzy Clustering Techniques Used for Web Personalization. In Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American (pp. 335-340). IEEE.
[27]. Varghese, N. M., & John, J. (2012, October). Cluster optimization for enhanced web usage mining using fuzzy logic. In Information and Communication Technologies (WICT), 2012 World Congress on (pp. 948-952). IEEE.
[28]. Xiao-Gang, W., & Yue, L. (2009, August). Web mining based on user access patterns for web personalization. In Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on (Vol. 1, pp. 194-197). IEEE.
[29]. Zhang, Y., Xu, G., & Zhou, X. (2005). A latent usage approach for clustering web transaction and building user profile. In Advanced Data Mining and Applications (pp. 31-42). Springer Berlin Heidelberg.
[30]. Zhao, Q., & Bhowmick, S. S. (2003). Sequential pattern mining: A survey.ITechnical Report CAIS Nayang Technological University Singapore, 1-26.
[31]. بهرنگ مسعودیفر، "ارائه روشهایی برای حل مشکل کاربر جدید در سیستمهای توصیه کننده همکارانه بر مبنای حافظه"، دانشگاه صنعتی امیر کبیر، دانشکده مهندسی کامپیوتر و فناوری اطلاعات، 1385.
[1]. Abraham, A., & Ramos, V. (2003, December). Web usage mining using artificial ant colony clustering and linear genetic programming. In Evolutionary Computation, 2003. CEC'03. The 2003 Congress on (Vol. 2, pp. 1384-1391). IEEE.
[2]. Bergmann, R., & Stahl, A. (1998). Similarity measures for object-oriented case representations (pp. 25-36). Springer Berlin Heidelberg.
[3]. Castellano, G., Fanelli, A. M., Mencar, C., & Torsello, M. A. (2007, November). Similarity-based fuzzy clustering for user profiling. In Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops (pp. 75-78). IEEE Computer Society.
[4]. Castellano, G., Fanelli, A. M., Mencar, C., & Torsello, M. A. (2007, November). Similarity-based fuzzy clustering for user profiling. In Proceedings of the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops (pp. 75-78). IEEE Computer Society.
[5]. Dai, H. K., & Mobasher, B. (2002). Using ontologies to discover domain-level web usage profiles. Semantic Web Mining, 35.
[6]. Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., & Harshman, R. (1988, May). Using latent semantic analysis to improve access to textual information. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 281-285). ACM.
[7]. Eirinaki, M., Mavroeidis, D., Tsatsaronis, G., & Vazirgiannis, M. (2006). Introducing semantics in web personalization: The role of ontologies. InSemantics, Web and Mining (pp. 147-162). Springer Berlin Heidelberg.
[8]. Gabrilovich, E., & Markovitch, S. (2007, January). Computing Semantic Relatedness Using Wikipedia-based Explicit Semantic Analysis. In IJCAI (Vol. 7, pp. 1606-1611).
[9]. Gonzales, E., Mabu, S., Taboada, K., & Hirasawa, K. (2010, August). Web Mining using Genetic Relation Algorithm. In SICE Annual Conference 2010, Proceedings of (pp. 1622-1627). IEEE.
[10]. Kosala, R., & Blockeel, H. (2000). Web mining research: A survey. ACM Sigkdd Explorations Newsletter, 2(1), 1-15.
[11]. M. Eirinaki, M. Vazirgiannis, I. Varlamis, “SEWeP: using site semantics and a taxonomy to enhance the Web personalization process”, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 2003.
[12]. Minio, M., & Tasso, C. (1996, January). User modeling for information filtering on internet services: Exploiting an extended version of the umt shell. In UM96 Workshop on User Modeling for Information Filtering on the WWW (pp. 2-5).
[13]. Nasraoui, O., Soliman, M., Saka, E., Badia, A., & Germain, R. (2008). A web usage mining framework for mining evolving user profiles in dynamic web sites.Knowledge and Data Engineering, IEEE Transactions on, 20(2), 202-215.
[14]. P. Achananuparp, H. Han, O. Nasraoui and R. Johnson, “Semantically Enhanced User Modeling”, Proceedings of the 2007 ACM Symposium on Applied Computing (Seoul, Korea, March 11 - 15, 2007). SAC '07. ACM, New York, NY, 1335-1339.
[15]. Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions on, 19(1), 17-30.
[16]. Singh, V. K., Tiwari, N., & Garg, S. (2011, October). Document clustering using k-means, heuristic k-means and fuzzy c-means. In Computational Intelligence and Communication Networks (CICN), 2011 International Conference on (pp. 297-301). IEEE.
[17]. Suryavanshi, B. S., Shiri, N., & Mudur, S. P. (2006, June). Analysis of Fuzzy Clustering Techniques Used for Web Personalization. In Fuzzy Information Processing Society, 2006. NAFIPS 2006. Annual meeting of the North American (pp. 335-340). IEEE.
[18]. Tang, Y. L., & Qin, F. (2010, July). Research on web association rules mining structure with genetic algorithm. In Intelligent Control and Automation (WCICA), 2010 8th World Congress on (pp. 3311-3314). IEEE.
[1]. Varghese, N. M., & John, J. (2012, October). Cluster optimization for enhanced web usage mining using fuzzy logic. In Information and Communication Technologies (WICT), 2012 World Congress on (pp. 948-952). IEEE.
[2]. Peng, X., Cao, Y., & Niu, Z. (2008, December). Mining Web Access Log for the Personalization Recommendation. In MultiMedia and Information Technology, 2008. MMIT'08. International Conference on (pp. 172-175). IEEE.
[3]. Xiao-Gang, W., & Yue, L. (2009, August). Web mining based on user access patterns for web personalization. In Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on (Vol. 1, pp. 194-197). IEEE.
[1]. Varghese, N. M., & John, J. (2012, October). Cluster optimization for enhanced web usage mining using fuzzy logic. In Information and Communication Technologies (WICT), 2012 World Congress on (pp. 948-952). IEEE.
[2]. Peng, X., Cao, Y., & Niu, Z. (2008, December). Mining Web Access Log for the Personalization Recommendation. In MultiMedia and Information Technology, 2008. MMIT'08. International Conference on (pp. 172-175). IEEE.
[3]. Xiao-Gang, W., & Yue, L. (2009, August). Web mining based on user access patterns for web personalization. In Computing, Communication, Control, and Management, 2009. CCCM 2009. ISECS International Colloquium on (Vol. 1, pp. 194-197). IEEE.