فهرست:
فصل1 کلیات پژوهش... 1
1-1. مقدمه. 2
1-2. تعریف مساله و سوال اصلی تحقیق.. 5
1-3. فرضیهها 5
1-4. اهداف تحقیق.. 5
1-5. روش تحقیق.. 6
1-6. مراحل انجام تحقیق.. 6
1-7. ساختار پایاننامه. 7
فصل2 روش پیشنهادی.. 8
2-1. فرضیات الگوریتم.. 9
2-2. معرفی EST-COCOMO II 9
2-3. بررسی پیادهسازی مدل ترکیبی EST-COCOMO II 11
2-3-1. معرفی ابزار MATLAB. 11
2-3-1-1. اندازهگیری دقیق.. 12
2-3-1-2. قدرت Matlab. 13
2-3-2. تشریح کلی پیادهسازی سیستم.. 14
2-3-2-1. روش آزمون و خطا 14
2-3-2-2. روش جداول ارجاع. 14
2-3-2-3. روش ANFIS. 15
2-3-3. روند پیادهسازی سیستم در نرمافزار MATLAB. 16
2-3-3-1. تشکیل Dataset مصنوعی.. 18
2-3-3-2. طراحی ANFIS. 21
2-3-4. معرفی و ارزیابی Dataset مصنوعی ایجاد شده. 28
2-3-4-1. آزمون تحلیل واریانس مقایسه چند جامعه مستقل (ANOVA) 28
2-3-5. شاخصهای EST-COCOMO II 31
2-4. جمعبندی.. 32
فصل3 مبانی تحقیق و مروری بر تحقیقات پیشین.. 33
3-1. برآورد پروژههای نرمافزاری.. 34
3-1-1. تکنیکهای مبتنی بر تجربه. 35
3-1-2. تکنیک مبتنی بر مدل الگوریتمی.. 35
3-2. مدل COCOMO II 36
3-2-1. مقدمه. 36
3-2-2. اندازهگیری.. 38
3-2-3. تخمین تلاش.... 43
3-2-3-1. محرکهای هزینه در مدل Post Architecture. 44
3-2-3-2. محرکهای مدل Early Design. 61
3-2-4. تخمین هزینه. 63
3-3. منطقفازی.. 63
3-3-1. مجموعههای قطعی.. 64
3-3-2. مجموعههای فازی.. 65
3-3-3. تابع عضویت... 65
3-3-3-1. اشکال مختلف توابع عضویت... 66
3-3-4. عملیات اساسی روی مجموعههای فازی (t-norm, co-norm): 70
3-3-5. متغیرهای زبانی.. 71
3-3-6. روابط فازی.. 73
3-3-7. کنترل فازی.. 73
3-3-7-1. مزایای کنترل فازی.. 74
3-3-7-2. مراحل طراحی یک سیستم فازی.. 75
3-3-7-3. بررسی فرایند طراحی تعدادی از نمونههای واقعی.. 75
3-3-8. موتور استنتاج.. 77
3-3-8-1. روشهای غیر فازی سازی.. 78
3-3-8-2. محتملترین در مقابل سازگارترین روش... 78
3-4. خوشهبندی فازی C-Means. 81
3-4-1. مقدمه. 81
3-4-2. هدف از خوشهبندی.. 82
3-4-3. خوشهبندی فازی.. 82
3-4-3-1. الگوریتم خوشهبندی فازی C-Means. 84
3-4-4. بررسی نمونه تست... 88
3-5. مروری بر برخی کارهای مرتبط... 88
3-5-1. جمعبندی.. 90
3-6. نتیجهگیری.. 92
فصل4 بررسی سیستم و ارزیابی نتایج آن.. 93
4-1. شاخصهای ارزیابی و شبیهسازی.. 94
4-2. روند بررسی و نتایج خروجی.. 96
4-3. جمع بندی.. 100
فصل5 جمعبندی و پیشنهادها 102
5-1. یافتههای تحقیق.. 103
5-2. نوآوری تحقیق.. 104
5-3. پیشنهادها 105
مراجع.. 106
واژهنامه. 112
منبع:
[1] Pressman, R.S. (2005). ”Software Engineering: A Practitioner's Approach”, Boston.
[2] McConnell, S. (1996). “Rapid development: taming wild software schedules”, Microsoft Press.
[3] Anupama Kaushik, A.C., Deepak Mittal, Sachin Gupta. (2012). “COCOMO Estimates Using Neural Networks. I.J. Intelligent Systems and Applications”, pp. 22-28.
[4] Sommerville, I. (2007). ” Software Engineering, Addison-Wesley”.
[5] Ali Bou Nassif and Luiz Fernando Capretz, D.H. (2012). “Software Effort Estimation in the Early Stages of the Software Life Cycle Using a Cascade Correlation Neural Network Model”, 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, IEEE, pp. 589-594.
[6] Chintala Abhishek, V.P.K., Harish Vitta, Praveen Ranjan Srivastava. (2010). “Test Effort Estimation Using Neural Network”, J. Software Engineering & Applications, pp. 331-340.
[7] Divya Kashyap, A.T., Prof. A. K. Misra. (2012). “Software Development Effort and Cost Estimation: Neuro-Fuzzy Model”, IOSR Journal of Computer Engineering (IOSRJCE), pp. 12-14.
[8] Jagannath Singh, B.S.,”Software Effort Estimation with Different Artificial Neural Network”, pp. 815-818.
[9] Jaswinder Kaur, S.S., Dr. Karanjeet Singh Kahlon, Pourush Bassi. (2010). “Neural Network-A Novel Technique for Software Effort Estimation”. International Journal of Computer Theory and Engineering, pp. 13-17.
[10] Kirti Seth, A.S., Ashish Seth. (2010). “Component Selection Efforts Estimation– a Fuzzy Logic Based Approach”, International Journal of Computer Science and Security, (IJCSS), pp. 210-215.
[11] Kunal Gaurav, P.J., K.S.Patnaik, PhD. (2013). “Analyzing Effort Estimation in Multistage based FL-COCOMO II Framework using various Fuzzy Membership Functions”, International Journal of Computer Applications, pp. 35-39.
[12] Manpreet Kaur, S.G. (2012). “Analysis of Neural Network based Approaches for Software effort Estimation and Comparison with Intermediate COCOMO”. International Journal of Engineering and Innovative Technology (IJEIT), pp. 197-200.
[13] Prasad Reddy, Rama Sree P and Ramesh. (2010). “Software Effort Estimation using Radial Basis and Generalized Regression Neural Networks”, JOURNAL OF COMPUTING, pp. 87-92.
[14] Prasad Reddy, Rama Sree. (2011). “Application of Fuzzy Logic Approach to Software Effort Estimation”, (IJACSA) International Journal of Advanced Computer Science and Applications, pp. 87-92.
[15] Raju. (2010). “An Optimal Neural Network Model for Software Effort Estimation”, Int.J. Of Software Engineering, IJSE, pp. 63-78.
[16] Roheet Bhatnagar, Vandana Bhattacharjee. (2011). “A Novel Approach to the Early Stage Software Development Effort Estimations using Neural Network Models: A Case Study”, IJCA Special Issue on “Artificial Intelligence Techniques - Novel Approaches & Practical Applications”, pp. 8-11.
[17] Roheet Bhatnagar, M.K.G., Vandana Bhattacharjee. (2010). “Software Development Effort Estimation – Neural Network vs. Regression Modeling Approach”. International Journal of Engineering Science and Technology, pp. 2950-2956.
[18] Sandeep Kad, V.C. (2011). “Fuzzy Logic based framework for Software Development Effort Estimation”. An International Journal of Engineering Sciences, pp. 330-342.
[19] Shiyna Kumar, V.C. (2013). “Neural Network and Fuzzy Logic based framework for Software Development Effort Estimation”, International Journal of Advanced Research in Computer Science and Software Engineering, pp. 19-24.
[20] Vishal Sharma, H.K.V. (2010). “Optimized Fuzzy Logic Based Framework for Effort Estimation in Software Development”, IJCSI International Journal of Computer Science, pp. 30-38.
[21] Xishi Huang, D.H., Jing Ren, Luiz F. Capretz. (2005). “Improving the COCOMO model using a neuro-fuzzy approach”, Elsevier, pp. 29-40.
[22] Ali Idri, A.A., Laila Kjiri. (2000). “COCOMO Cost Model Using Fuzzy Logic”, in 7th International Conference on Fuzzy Theory & Technology, New Jersy, pp. 1-4.
[23] Barry Boehm, B.C., Ellis Horowitz, Chris Westland, Ray Madachy, Richard Selby. (1995). “Cost Models for Future Software Life Cycle Processes: COCOMO 2.0”, Science Publishers, Amsterdam, The Netherlands.
[24] Hamdy, A. (2012). “Fuzzy Logic for Enhancing the Sensitivity of COCOMO Cost Model”, Journal of Emerging Trends in Computing and Information Sciences, pp. 1292-1297.
[25] Kasabov, N.K. (1998). “Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering”, The MIT Press.
[26] Attarzadeh, I.H.O., Siew. (2009). “Proposing a new high performance model for Software Cost estimation”, in Second international Conference on Computer and electrical Engineering, pp. 112-116.
[27] K.S.Patnaik and P.J.a. (2012). “Comparative Analysis of COCOMO81 using various Fuzzy Membership Functions”, International Journal of Computer Applications, pp. 20-27.
[28] Vishal Sharma and Harsh Kumar Verma. (2010). “Optimized Fuzzy Logic Based Framework for Effort Estimation in Software Development”, IJCSI International Journal of Computer Science Issues, pp. 30-38.
[29] Barry W. Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy, Donald Reifer, and Bert Steece. (2000). “Software Cost Estimation with COCOMO II”, Prentice Hall, Englewood Cliffs, N.J.
[30] R. Royce. (1998). “Software Project Management A Unified Framework”, Addison-Wesley, Reading, Ma.
[31] M. Paulk, C. Weber, B. Curtis, and M. Chrissis. (1995). “The Capability Maturity Model: Guidelines for Improving the Software Process”, Addison-Wesley.
[32] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R. (1995), “Cost Models for Future Software Life-cycle Processes: COCOMO 2.0” Annals of Software Engineering Special Volume on Software Process and Product Measurement, J.D. Arthur and S.M. Henry (Eds.), J.C. Baltzer AG, Science Publishers, Amsterdam, The Netherlands , pp. 45-60.
[33] Zadeh L.A. (1965). “Fuzzy sets”. Information and Control 8: pp. 338-353.
[34] Novák, V., Perfilieva, I. and Močkoř, J. (1999). “Mathematical principles of fuzzy logic Dodrecht: Kluwer Academic”, 320 pp. ISBN 0-7923-8595-0.
[35] Ahlawat, Nishant, Ashu Gautam, and Nidhi Sharma. (2014). “Use of Logic Gates to Make Edge Avoider Robot”. International Journal of Information & Computation Technolog, pp. 629-632.
[36] (2008). “Fuzzy Logic”. Stanford Encyclopedia of Philosophy. Stanford University.
[37] Pelletier, Francis Jeffry. (2000). “Review of Metamathematics of fuzzy logics”. JSTOR 421060. The Bulletin of Symbolic Logic 6 (3): pp. 342-346.
[38] Zadeh, L. A. et al. (1996). “Fuzzy Sets, Fuzzy Logic, Fuzzy Systems”. World Scientific Press, ISBN 981-02-2421-4
[39] (2014). “The L-Shaped Membrane”. MathWorks.
[40] (2013). “System Requirements and Platform Availability”. MathWorks.
[41] Richard Goering. (2004). “Matlab edges closer to electronic design automation world”. EE Times.
[42] M. Halkidi, Y. Batistakis and M. Vazirgiannis. (2001). “On Clustering Validation Techniques", Journal of Intelligent Systems, pp. 107-145.
[43] George E. Tsekouras and Haralambos Sarimveis. (2004). “A new approach for measuring the validity of the fuzzy c-means algorithm”. Advances in Engineering Software 35, pp. 567-575.
[44] N. Zahid, M. Limouri and A. Essaid. (1999). “A new cluster-validity for fuzzy clustering”, Pattern Recognition 32, pp. 1089-1097.
[45] M. Ramze Rezaee, B.P.F. Lelieveldt, J.H.C. Reiber. (1998). “A new cluster validity index for the fuzzy c-mean”. Pattern Recognition Letters 19, pp. 237-246.
[46] Bezdek, J.C. (1981). “Pattern Recognization with Fuzzy Objective Function Algorithms”. Plenum press, New York.
[47] Bezdek JC. (1973). “Fuzzy mathematics in pattern classification”. PhD dissertation, Cornell University, Ithaca, NY, pp 125-138.
[48] S.L. Chiu. (1994). “Fuzzy model identification based on cluster estimation", J. Intell. Fuzzy Systems 2, pp. 267- 278.
[49] Banker R. D., Chang H., Kemerer C. (1994). “Evidence on Economies of Scale in Software Development”, Information and Software Technology, 1994, pp. 275-282.