فهرست:
فصل اول.
مقدمه.
1-1- مقدمه. 1
1-2- تاریخچه BCI 4
1-3- کاربردهای BCI 7
1-4- تعریف مساله. 7
1-5 - ساختار پایان نامه. 7
فصل دوم
سیگنالهای مغزی..
2-1- مقدمه. 9
2-2- کشف سیگنالهای مغزی.. 10
2-3- ثبت سیگنالهای مغزی.. 11
2-4- پیش پردازشها روی سیگنالهای مغزی.. 12
فصل سوم
مروری بر تحقیقات انجام شده در زمینه دسته بندی سیگنالهای مغزی
3-1- مقدمه. 16
3-2- معرفی دادههای موجود. 17
3-2-1- مشخصات دادههای ثبت شده توسط گروه دانشگاهColorado. 17
3-2-2- مشخصات داد ههای ثبت شده توسط گروه Graz. 18
3-2-3- مشخصات دادههای MIT-BIH... 19
3-3- استخراج ویژگی.. 20
3-4- دسته بندی.. 23
فصل چهارم.
مقایسه تحلیلی تبدیل فوریه ، موجک و والش
4-1- مقدمه. 25
4-2- تبدیل فوریه. 25
4-3- تبدیل موجک.... 30
4-3-1- مقیاس. 32
4-4- تاریخچه تبدیل والش.... 35
4-4-1- توابع والش..... 35
4-4-2- تبدیل والش..... 36
فصل پنجم
توصیف روش پیشنهادی
5-1- مقدمه. 40
5-2- پایگاه داده مورد استفاده 40
5-3- حذف نویز. 42
5-3-1- آنالیز مولفههای مستقل.. 43
5-3-2- حذف نویز با استفاده از آنالیز مولفه هایمستقل.. 44
5-3-3- حذف نویز با استفاده از تبدیل موجک.... 46
5-3-4- حذف نویز با استفاده از تبدیل والش..... 47
5-3-5- حذف نویز با استفاده از روش ترکیبی تبدیل والش و ICA... 50
5-4- استخراج ویژگی.. 51
5-4-1- آنتروپی... 52
5-4-2- استخراج ویژگی با استفاده از تبدل والش..... 53
5-4-3- استخراج ویژگی با استفاده تبدیل فوریه و موجک.... 53
5-5- ماشین بردار پشتیبان (Support Vector Machin) 54
5-5-1- ابر صفحه جداساز. 55
5-5-2- جداسازی غیر خطی... 58
فصل ششم
نتایج و نتیجه گیری..
6-1- مقدمه. 60
6-2- حذف نویز. 61
6-3- معیارهای ارزیابی.. 65
6-3-1- نسبت سیگنال به نویز (Signal to Noise Rate) 65
6-3-2- میانگین مربع خطا (Mean Square Error) 66
6-3-3- جذر میانگین تفاضل مربعات(درصد)(Percentage Root Mean Square Difference) 67
6-4- استخراج ویژگی.. 68
6-4-1- ویژگیهای تبدیل والش..... 69
6-4-2- ویژگیهای تبدیل فوریه. 72
6-4-3- ویژگیهای تبدیل موجک.... 76
6-5- مقایسه با کارهای مرتبط بر روی این مجموعه داده 80
6-6- نتیجه گیری.. 83
6-7- پیشنهاد ها 85
منابع:... 86
منبع:
[1] .Melody M. Moore,‘Real-World Applications for Brain–Computer Interface Technology’, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003.
[2] . J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. G. McFarland, P. H. Peckhom, G. Schalk, E. Donchin, L. A. Quaterano, C. J. Robinson, T. M. Vaughan, “Brain–Computer Interface Technology : A Review of the First International Meeting”, IEEE Trans. Rehab. Eng., vol. 8, No. 2,pp. 164–173, June 2000.
[3] . R. Elul, “Gaussian Behavior of the Electroencephalogram: Changes during performance of Mental Task”, Science, vol. 164, pp. 338–331, April 1969.
[4] . Z. A. Keirn, J. I. Aunon, “A New mode of Communication between Man and his Surroundings”, IEEE Trans. Biomed. Eng., vol. 37, no. 12, pp. 1209–1214, 1990.
[5] . C. W. Anderson, E. A Stolz, S. Shamsunder, “Multivariate Autoregressive Models for Classification of Spontaneous Electoencephalographic Signal during Mental Tasks”, IEEE Trans.Biomed. Eng., vol. 45, No. 3, pp. 277–286, March 1998.
[6] .C. Anderson and Z. Sijercic, “Classification of EEG Signals from Four Subjects during Five Mental Tasks ”, in Solving Eng. Problems with Neural Networks: Proc. Conf. on Eng.
Applicationsin Neural Networks (EANN'96), PL 34, pp. 407-414, Finland 1996.
[7] . G. Pfrutscheller, C. Neuper, C. Guger, W. Harkam, H. Ramoser, A. Schlogl, B. Dbermaier, M.Pregenzer, “Current Trends in Graz Brain–Computer Interface (BCI) Research”, IEEE Trans.Rehab. Eng., vol. 8, No. 2, pp. 216–218, June 2000.
[8] . G. Pfrutscheller, C. Neuper, A. Schlogl, K. Lugger, “Separability of EEG Signals Recorded during Right and Left Motor Imagery Using Adaptive Autoregressive Parameters”, IEEE Trans. Rehab. Eng., vol. 6, pp. 316–325, September 1998.
[9] . A. Schloegl, C. Neuper, G. Pfrutscheller, “Subject Specific EEG Patterns During Motor Imaginary”, in Proc. 19th Inter. Conf., IEEE/EMBS, Chicago 1997, pp. 1530-1532.
[10] . A. L. Schloegl, K. Lugger, G. Pfurtscheller, “ Using Adaptive Autoregressive Parameters for a Brain Computer Interface Experiment”, Proc. 19th Int. Conf. IEEE/EMBS, Chicago, IL. USA, 1997, pp. 1533-1535.
[11] . A. Schlogl, S. J. Roberts, G. Pfrutscheller, “A criterion for adaptive autoregressive models”, in Proc. 22nd Annu. Inter. Conf. IEEE/EMBS, vol. 2, pp. 1581-1582, 2000.
[12] . J. R. Wolpaw, H. Ramaser,D. J. McFarland, G. Pfrutscheller, “EEG–Based Communication: Improved Accuracy by Response Verification”, IEEE Trans. Rehab. Eng., vol. 6, No. 3, pp. 326–333, September 1998.
[13] . S. Baillet, J. C. Mosher, R. M. Leahy, “Electromagnetic Brain Mapping”, IEEE Signal Processing, vol. 18, no. 6, pp. 14-30, November 2001.
[14] . Who named it?, http://www.whonamedit.com/doctor.cfm/845.html.
[15] . The History of Medicine: http://www.medhelpnet.com/medhist7.html, 1901-1925.
[16] .Biocybernaut,Institute,EEG-ElectroEncephaloGraph,http://biocybernaut.com/tutorial/ eeg.html.
[17] . D. G. Domenick, “International 10-20 Electrode Placement System for Sleep”, http://members.aol.com/aduial/20-10sys.html.
[18] . http://dragon.inha.ac.kr/~neurolee/eeg/eeg_eng.htm, EEG (Electroencephalogram).
[19] .Gratton F. G., Coles M. G., & Donchin E,’ A new method for off-line removal of ocular artifact.’ Electroencephalographyand Clinical Neurophysiology , 55,pp468–484,1983.
[20] . Berg P., & Scherg M, ‘Dipole models of eye activity and its.application to the removal of eye artifacts from the EEG and MEG’.,Clinical Physics and Physiological Measurements , 12 ( SupplementA),pp 49–54,1991.
[21] . Lagerlund T. D., Sharbrough F. W., & Busacker, N. E.,‘Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition’. Journal of Clinical Neurophysiology, 14, 73–82, 1997.
[22] . Makeig S., Bell A. J., Jung T. -P., Sejnowski T. J., ‘Independent component analysis of electroencephalographic data. In Advances in neural information processing systems’, D. Touretzky, M. Mozer, & M. Hasselmo Eds., Vol. 8, pp 145–151. Cambridge, MA: The MIT Press,1996.
[23] . Vorobyov S., Cichocki A., ‘Blind noise reduction for multisensory signals using ICA and subspace filtering, withapplication to EEG analysis’. Biological Cybernethics, Springer-Verlag 86,pp 293-303,2002.
[24] . Zhou W., Gotman J., ‘Removal of EMG and ECG Artifacts from EEG Based on Wavelet Transform and ICA.’Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA pp 392-395,2004.
[25] . Melody M. Moore, ‘Real-World Applications for Brain–Computer Interface Technology’, IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING,VOL.11,NO.2,JUNE2003.
[26] . Abootalebi V., Moradi M., Khalilzadeh M., ‘A comparisonof methods for ERP assessment in a P300-based GKT’, International Journal of Psychophysiology, 62, 309:320, 2006.
[27] . Delorme A., Sejnowski T., & Makeig S., ‘Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis’. NeuroImage 34, pp 1443-1449, 2007.
[28] . Castellanos N. P., A. Makarov V., ‘Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis’. Journal of Neuroscience Methods 158, pp 300-312, 2006.
[29] . http://www.physionet.org/physiobank/database/sleep-edf
[30] . L. Cohen, “Time-Frequency Analysis”, Prentice Hall, 1995.
[31] . Xiu Zhang and Xingyu Wang, “A Genetic Algorithm based Time-Frequency Approach to a Movement Prediction Task”, Proceedings of the 7th World Congress on Intelligent Control and Automation June, Chongqing, China,pp 25 - 27, 2008.
[32] .Katsuluro Inow, Daiki Mori, Kota Sugioka, Gert Pfurtscheller and Kousuke Kurnamaru ,” Feature Extraction of EEG Signals During Right and Left Motor Imagery” , SICE AnnuaI Conference in SapporoHokkaido Institute of Tecnology, Japan, August 44,2004.
[33] . Anna Caterina Merzagora, Scott Bunce, Meltem Izzetoglu and Banu Onaral “Wavelet analysis for EEG feature extraction in deception detection”, Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, 2006.
[34] . Huaiyu Xu, Jian Lou, Ruidan Su, Erpeng Zhang “ Feature Extraction and Classification of EEG for Imaging Left-right Hands Movement”, © IEEE 2009.
[35] . Md. Riyasat Azim, Md. Shahedul Amin, Shah Ahsanul Haque, Mir Nahidul Ambia, Md. Asaduzzaman Shoeb “Feature Extraction of Human Sleep EEG Signals using Wavelet Transform and Fourier Transform”, 2nd International Conference on Signal Processing Systems (ICSPS), 2010.
[36] . Aihua Zhang, Bin Yang, Ling Huang “Feature Extraction of EEG Signals Using Power Spectral Entropy” , International Conference on BioMedical Engineering and Informatics, IEEE 2008.
[37] مریم وطن خواه، محمد رضا اکبرزاده توتونچی ، علی مقیمی، وحید اسدپور،"اندازه گیری سطح درد با استفاده از سیگنال های مغزی"،هجدهمین کنفرانس مهندسی برق ایران،دانشگاه صنعتی اصفهان،21-23اردیبهشت 1389
[38] . Polikar R.; "The wavelet tutorial"; http://users. rowan.edu/ ~polikar/ WAVELETS.
[39] . دکتر حمید پوررضا ،تبدیل موجک ، آزمایشگاه بینایی ماشین گروه مهندسی کامپیوتر دانشگاه فردوسی مشهد
[40] . M.Akin ; "comperision of Wavelet Transform and FFT methods in Analysis of EEG signals"; Journal Medical Systems, june 2002.
[41] .J.l.Walsh ,”A closed set of normal orthogonal functions”, Amer.J.Math.45, Island,American Mathematical Society pp:5-24-1923.
[42] . G. Pfurtscheller, C. Neuper, A. Schlögl, et al, “Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters”, IEEE Trans. Rehab. Eng, vol. 6(3), pp.316-25, 1998.
[43] . Maria T. tito, Malek Adjouadi, Mercedes Cabrerizo, Melvin Ayala, Ilker Yaylali, Armando Barreto, Naphtali Rishe,’ Application of the Walsh Transform Towards Seizure Detection’, Proceedings of the 6th WSEAS International Conference on Signal Processing, Robotics and Automation, Corfu Island, Greece, February 16-19,2007.
[44] . Pratt, W.K., Kane, J., Andrews, H.C.,'Hadamard Transform Image Coding,' Proc. IEEE, Vol.57,No.1,pp.58-68,Jan.1969.
[45] . Shanks, J.L., 'Computation of the fast Walsh-fourier Transform,' IEEE Trans. Vol.18, pp.457-459, May 1969.
[46] . Harmuth, H.F.,'A Generalized Concept of Frequency and some Applications,' IEEE Trans. on Information Theory, Vol.14, No.3, pp.375-382, May 1968.
[47] . BCI Competition IV Results/ Data sets 3.
[48] .Hyvarinen A., Karhunen J., Oja E., ‘Independent Component Analysis-Theory and Applications,’JohnWiely&Sons,2001.
[49] . R. Vigario,J. Sarela,V. Jousmaki, M. Hamalainen, E. Oja, ‘Independent Component Approach to the Analysis of EEG and MEG Recording, ‘ IEEE Trans. Biomed. Eng. vol. 47,no. 5, MAY 2000.
[50] . فرناز قاسمی، محمد حسن مرادی، مهدی تهرانی دوست ، وحید ابوطالبی ؛ “ نقاط قوت و ضعف استفاده از ترکیب آنالیز مولفه های مستقل و تبدیل ویولت به منظور حذف خودکار آرتیفکت چشمی از سیگنال الکتروانسفاگرام” ، چهاردهمین کنفرانس مهندسی ملی سالانه انجمن کامپیوتر ایران ، دانشگاه صنعتی امیر کبیر، 20 و 21 اسفند 1387.
[51] . Donoho, D.L. and I.M. Johnstone. ‘Adapting to unknown smoothness via wavelet shrinkage’. J. Am. Stat. Assoc., 90: 1200-1224, , 1995.
[52] . Han, J.Y., S.K. Lee and H.B. Park. ‘Denosing ECG using Translation Invariant Multiwavelet’. World Acad . Sci. Eng. Technol., 40: 140-144, 2009.
[53] .J. N. Kapur, and H.K. Kesavan, ‘Entropy optimization principles with applications’, Academic Press, San Diego,1992.
[54] . Christianini, N., Shawe-Taylor, J.’ An Introduction to support vector machines and other kernel-based learning methods’. Cambridge University Press (2000).
[55] . Hwanjo Yu and Sungchul Kim,” SVM Tutorial: Classification, Regression, and Ranking”, Pohang, South Korea
[56] . Platt, J.: Fast training of support vector machines using sequential minimal optimization. In:A.S. B. Scholkopf C. Burges (ed.) Advances in Kernel Methods: Support Vector Machines.MIT Press, Cambridge, MA (1998).