فهرست:
فهرست مطالب
عنوان
صفحه
چکیده .....................................................................................................................
1
فصل اول:مقدمه .......................................................................................................
2
1-1- پیشگفتار .............................................................................................................
3
1-2- نوسانات فرکانس پایین و ناپایداری سیگنال کوچک ..........................................
4
1-3- بهبود پایداری سیگنال کوچک با استفاده از تجهیزات کنترلی ............................
5
1-4- اهداف پروژه ......................................................................................................
5
1-5- سرفصلهای پایاننامه .........................................................................................
6
فصل دوم: مروری بر ادبیات گذشته و مدل سازی سیستم .........................................
7
2-1- مقدمه .................................................................................................................
8
2-2- فرضیات و تعریفهای اساسی ...........................................................................
9
2-3- طبقهبندی پایداری سیستم قدرت .......................................................................
9
2-3-1- پایداری زاویه روتور ................................................................................
10
2-4- روشهای بهبود پایداری سیگنال کوچک ...........................................................
12
2-4-1- پایدارساز سیستم قدرت ............................................................................
12
2-4-1-1- روشهای خطی طراحی پایدارساز ..................................................
13
2-4-1-2- روشهای غیرخطی طراحی پایدارساز.............................................
15
2-5- مدل سازی سیتم قدرت .....................................................................................
18
2-5-1- ژنراتور سنکرون و اجزاء آن .....................................................................
18
2-5-2- محاسبه ضرایب مدل هفرون فیلیپس ........................................................
23
2-5-3- مدل فضای حالت .....................................................................................
23
2-5-3-1- مدل فضای حالت سیستم تک ماشین ..............................................
23
2-6- مدل بار ..............................................................................................................
24
2-7- پایدارساز سیستم قدرت ........................................................................
24
2-8- الگوریتم جستجوی هارمونی ..............................................................................
26
2-8-1- مقدمه .......................................................................................................
26
2-8-2- ساختار روش حل .................................................................................
29
2-8-2-1-تعیین اولیه مسئله و پارامترهای ......................................................
29
2-8-2-2- تعیین اولیه حافظه هارمونی ...........................................................
31
2-8-2-3- تولید هارمونی جدید بر اساس بداههنوازی ..................................
31
2-8-2-4- بروز رسانی حافظه هارمونی .........................................................
32
2-8-2-5- بررسی ناحیه توقف ......................................................................
32
2-8-3- الگوریتم جستجوی هارمونی بهبود یافته .....................................
32
2-9- نتیجهگیری ..........................................................................................................
34
فصل سوم: معرفی روش پیشنهادی...........................................................................
35
3-1- مقدمه .................................................................................................................
36
3-2- شماتیک کلی روش پیشنهادی ............................................................................
36
3-3- تحلیل مدال ........................................................................................................
38
3-4- توابع هدف برای بهینه سازی پارامترهای پایدارساز ...........................................
39
3-4-1- تابع هدف پیشنهادی ..................................................................................
42
3-5- تعیین پارامترهای اولیه الگوریتم..........................................................................
43
3-6- قیود تمامی توابع هدف ......................................................................................
43
3-7- مفروضات مسئله ................................................................................................
44
3-8- معرفی سیستم مورد مطالعه ................................................................................
44
3-9- ابزار شبیه سازی .................................................................................................
44
3-10- نتیجه گیری ......................................................................................................
45
فصل چهارم: شبیه سازی و مطالعات عددی .............................................................
46
4-1- مقدمه .................................................................................................................
47
4-2- تحلیل پایداری سیگنال کوچک سیستم تک ماشین بدون پایدارساز ..................
47
4-3- تحلیل پایداری سیگنال کوچک سیستم تک ماشین با حضور پایدارساز ............
51
4-4- تنظیم پارامترهای سیستم قدرت 4 ماشینه .........................................................
58
4-5- نتیجهگیری ..........................................................................................................
64
فصل پنجم: نتیجهگیری و پیشنهادها .........................................................................
65
5-1- نتیجهگیری ..........................................................................................................
66
5-2- پیشنهادات برای ادامه کار ...................................................................................
66
فهرست مراجع ................................................................................................................
68
چکیده به زبان انگلیسی ...........................................................................................
71
منبع:
فهرست مراجع
[1] E.V.Larsen and D.A. Swann, “Applying power system stabilizers part- I: general concepts", IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, No. 6, pp. 3017-3024, June 1981.
[2] E.V.Larsen and D.A. Swann, “Applying power system stabilizers part- II: performance objective and tuning concepts", IEEE Trans. on Power Apparatus and Sys- tems, vol. PAS-100, No. 6, pp. 3025-3033, June 1981.
[3] P. Kundur, M. Klein, G. J. Rogers and M. S. Zywno, “Application of power system stabilizers for enhancement of overall system stability", IEEE Trans. on Power Systems, vol. 4, pp. 614-626, May 1989.
[4] F.P. DeMello, P.J. Nolan, T.F. Laskowski and J.M. Undrill, “Co-ordinated application of stabilizers in multi-machine power systems", IEEE Trans. on Power Appa-ratus and Systems, vol. PAS-99, pp. 892-901, May/June'80.
[5] O.H.Abdalla, S.A.Hassan and N.T.Tweig, “Co-ordinated stabilization of a multimachine power system", IEEE Trans. on Power Apparatus and Systems, vol.PAS- 103, pp. 483-494, Mar.'84.
[6] R.J. Fleming, M.A. Mohan and K. Parvatisam, “Selection of parameters of stabilizers in multimachine power systems", IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, pp. 2329-2333, 1981.
[7] K. E. Bollinger, A. Laha, R. Hamilton and T. Harras, “Power system stabilizer design using root locus methods", IEEE Trans. on Power Apparatus and Systems, vol. PAS-94, pp. 1484-1488, September/October 1975.
[8] H.Liu, L.Jin, D.Le, A.A.Chowdhury, “Impact of High Penetration of Solar Photovoltaic Generation on Power System Small Signal Stability“, IEEE International Conference on Power System Technology, 2010.
[9] S.Yuanzhang, W.Lixin, L.Guojie, L.Jin, “A Review on Analysis and Control of Small Signal Stability of Power System with Large Scale Integration of Wind Power”, IEEE International Conference on Power System Technology, 2010.
[10] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, “Definition and classification of power system stability,” IEEE Transaction on Power Systems, vol. 19, no. 2, 2004.
[11] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, “Definition and classification of power system stability,” IEEE Transaction on Power Systems, vol. 19, no. 2, 2004.
[12] C. Taylor, Power Voltage Stability. New York: McGraw-Hill, 1994.
[13] P. Kundur, Power System Stability and Control, The EPRI Power System Engineering Series ed. New York: McGraw- Hill, 1994.
[14] G. Rogers, “Demystifying power system oscillations,” IEEE Computer Applications in Power, 1996.
[15] A number of Authors, Power System Oscillation, Kluwer Academic Publishers, 2000.
[16] A. Doi and S. Abe, “Coordinated synthesis of power system stabilizers in multi-machine power systems,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 6, pp. 1473-1479, 1984.
[17] E. Z. Zhou, O. P. Malik, and G. S. Hope, “Theory and method for selection of power system stabilizer location,” IEEE Transactions on Energy Conversion, vol. 6, no. 1, pp. 170-176, 1991.
[18] J. V. Milanovic and A. C. Serrano Duque, “The use of relative gain array for optimal placement of PSSs,” in IEEE Power Engineering Society Winter Meeting, 2001, pp. 992- 996, vol. 3.
[19] D. Yang, V. Ajjarapu, “Critical eigenvalues tracing for power system analysis via continuation of invariant subspaces and projected Arnoldi method,” IEEE General Meeting, 2007.
[20] L. Haitao, Z. Wanhua, J. Zhang, M. Xiaobo, F. Zhao, “Modal analysis of machine tools during working process by matrix perturbation method,” ISAM IEEE conf., 2011.
[21] H. Othman, and et al., “On the design of robust power system stabilizers,” IEEE Proc of 28th conf on Dec. & control, pp. 1853-1857, December 1989
[22] Y. Yu, and Q. Li, “Pole-placement power system stabilizers design of an unstable nine-machine system,” IEEE Trans. Pr Sys., vol. 5, no. 2, pp.353-358, May 1990.
[23] C. Wu, and Y. Hsu, “Design of self-tuning PID PSS for multi-machine power systems,” IEEE Trans. Power Sys., vol. 3, no. 3, pp. 1059-1064, August 1988.
[24] M. K. El-Sherbiny, and et al., “Optimal pole shifting for power system stabilization,” EPSR 66 (2003) 253-258.
[25] M. Nambu, and Y. Ohsawa, “Development of an advanced power system stabilizer using a strict linearization approach,” IEEE Trans. Power Sys., vol. 11, no. 2, pp. 813-818, May 1996.
[26] V. M. Paina, and et al., “Optimal output feedback control of power systems with high-speed excitation systems,” IEEE Power App. & Sys., vol. PAS-95, no. 2, pp. 677- 686, March/April 1976.
[27] P. S. Rao, and I. Sen, “Robust tuning of power system stabilizers using QFT,” IEEE Trans.Cont. Sys. Tech., vol. 7, no. 4, pp. 478-486, July 1999.
[28] A. K. Sedigh, & G. Alizadeh, “Design of robust PSS using quantitive feedback theory,” IEEE contl Conf., pub. no.389, pp. 416-421, March 1994.
[29] J. M. Ramirez, & I. Castillo, “PSS & FDS simultaneous tuning,” EPSR 68 (2004) 33-40.
[30] C. T. Tse, & et al., “Robust PSS design by probabilistic eigenvalue sensitivity analysis,” EPSR 59 (2001) 47-54.
[31] M. Gibbard, & D. Vowles, “Design of PSSs for a multigenerator power station,”IEEE,pp.1167-1171, 2000.
[32] W. Gu, “System damping improvement using adaptive PSS,” IEEE Proc of Canadian conf on Elec. & computer engineering, Edmonton, Canada,pp.1245-1247,May 1999.
[33] J. Ritonja, & et al., “Design of an adaptive PSS,” IEEE, ISIE'99-Bled, Slovenia, pp. 1306-1311, 1999.
[34] A. Eichmann, & et al., “A prototype self-tuning adaptive PSS for damping of active power swings,” IEEE, pp. 122- 126, 2000.
[35] S. Deghdy, & et al., “Design of a PSS based on selftuning regulator,” IEEE, pp. 1046-1049, 1994.
[36] Y. L. Abdel-Magid, & et al., “Power system output feedback stabilizer design via genetic algorithms,” IEEE conf. publication no. 446, pp. 56-62, September 1997.
[37] M. A. Abido, & Y. L. Abdel-Magid, “Coordinated design of a PSS and an SVC-based controller to enhance power system stability,” EPSR 25 (2003) 695-704.
[38] M. A. Abido, “Optimal design of PSSs using particle swarm optimization,” IEEE Trans. Energy Con., vol. 17, no. 3, pp. 406-413, September 2002.
[39] W. Liu, and et al., “Adaptive neural network based PSS design,” IEEE, pp. 2970-2975, 2003.
[40] Y. Lee, and et al., “Design of single-input fuzzy logic control PSS,” IEEE Proc of TENCON'02, pp.1901-1904, 2002.
[41] D. M. Lam, & H. Yee, “A study of frequency responses of generator electrical torques for PSS design,” IEEE Trans. Power Sys.., vol. 13, no. 3, pp. 1136-1142, August 1998.
[42] M. A. Johnson, & et al., “Prony analysis and power system stability some recent theoretical and applications research,” IEEE, pp. 1918-1923, 2000.
[43] P. M. Anderson and A. A. Fouad, Power System Control and Stability. IEEE Press, Piscataway, NJ, 1994.
[44] P. Sauer and M. Pai, Power System Dynamics and Stability. Prentice Hall, Upper Saddle River, Nj, 1998.
[45] K.R. Padiyar, “Power System Dynamics Stability and Control", Interline publishing private Ltd., Bangalore, 1996.
[46] G. Gurrala, I. Sen, “Power system stabilizers design for interconnected power systems,” IEEE Trans. On Power Systems, Vol. 25, No. 2, May 2010, pp. 1042-1052.
[47] N. Mithulananthan, M. M. A. Salama, C. A. Canizaras, and J. Reeve, “Distribution system voltage regulation and var compensation for different static load models,” IJEEE, vol. 37, no. 4, October 2000, pp. 384-395.
[48] S. K. Wang, “A Novel Objective Function and Algorithm for Optimal PSS Parameter Design in a Multi-Machine Power System,” IEEE Trans. On Power Systems, vol. 28, No. 1, Feb. 2013.
[49] Geem, Z.W., Kim J.H. and Loganathan G.V. (2001).A new heuristic optimization algorithm: harmony search. Simulations. 76, 60–68.
[50] Yeniay, O. (2005). A comparative study on optimization methods for the constrained nonlinear programming problems. Mathematical Problems in Engineering. 2, 165– 173.
[51] Lee, K. S., Geem Z.W., Lee S. H., Bae K. W. (2005). The harmony search heuristic algorithm for discrete structural optimization, Eng. Optim. 37, 663–684.
[52] Fesanghary, M., Mahdavi, M., Minary-Jolandan, M., Alizadeh,Y. (2008). Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems. Computer Methods in Applied Mechanics and Engineering. 197, 3080–3091.
[53] R. Srinivasa, S. V. Narasimham, M. Ramalinga, “Optimal network reconfiguration of large scale distribution system using haramony search algorithm,” IEEE Trans. On Power System, Vol. 26, No. 3, 2011.
[54] A. Verma, B. K. Panigrahi, P.R. Bijwe, “Harmony search for transmission network expansion planning,” Generation, Transmission, Distribution, IET, Vol. 4, No. 6, 2010.
[55] A. Parizad, H. R. Baghaee, S. Dehghan, “Aplication of harmony serach for transmission expansion planning considering security index and uncertainty,” Electric power and energy conference, 2009.
[56] Mahdavi, M., Fesanghary M. and Damangir E. (2007). An improved harmony search algorithm for solving optimization problems. Appl Math Comput. 188, 1567–1579.
[57] R. P. Schulz, “Synchronous machine modeling,” presented at the symposim Adequacy and Philosophy of Modeling: System Dynamic Performance,” San Francisco, July 1972.
[58] S. Q. Yuan, D. Z. Fang, “Robust PSS Parameters Design Using a Trajectory Sensitivity Approach,” IEEE Trans. On Power Systems, Vol. 24, No. 2, May 2010.