فهرست:
فصل اول. 1
پیشینه پژوهش اصلاح سطح توسط پرتودهی لیزر 1
1-1 پیشگفتار 2
1-2 روشهای اصلاح سطحی مواد 3
1-2-1 اصلاح سطح توسط فرآوری و عملکرد پلاسما 3
1-2-2 روشهای عملیات شیمیاییتر و محلولها 4
1-2-3 روش تجزیه حرارتی به کمک افشاندن. 4
1-2-4 روش سُلژل. 4
1-2-5 روش ایجاد زبری و رسوبدهی پاششی توسط مگنترون. 5
1-2-6 روش رسوب شیمیایی بخار 5
1-2-7 روش رسوب فیزیکی بخار 6
1-2-8 روش پرتودهی ایکس، گاما و الکترون توسط شتابدهندۀ رودوترون. 6
1-2-9 روش لیتوگرافی یا چاپ سنگی. 7
1-2-10 روش پوشش فیزیکی یا مخلوط کردن. 7
1-2-11 روش پوششدهی چرخشی. 8
1-2-12 روش الکتروریسی. 9
1-2-13 روش بمباران یونی یا سایش با باریکۀ یونی. 10
1-2-14 روش لایه نشانی با لیزر پالسی. 10
1-2-15 روش قالب گیری حلال. 11
1-2-16 روش کاشت یونی. 11
1-2-17 روش کوپلیمریزاسیون پیوندی. 12
1-2-18 روش نانوایمپرینت یا نانوچاپ.. 13
1-2-19 روش قلم آغشته. 14
1-2-20 ایجاد زبری توسط میکروسکوپ تونلزنی روبشی. 14
1-2-21 ایجاد زبری به روش میکروسکوپ نیروی اتمی. 15
1-2-22 ایجاد فرسایش توسط لیزر 15
1-3 پیشینه پژوهش اصلاح سطحی صورت گرفته توسط پرتودهی لیزر 18
1-4 ارزیابی تغییرات شیمیایی، فیزیکی و خواص ایجاد شده ناشی از پرتودهی لیزر 23
1-4-1 واکنش پرتو لیزر و ماده 23
1-4-2 تغییرات عوامل شیمیایی ناشی از پرتودهی سطوح توسط لیزر 26
1-4-3 تغییرات فیزیکی و مرفولوژیکی ناشی از پرتودهی سطوح توسط لیزر 28
1-4-4 خواص و کاربردهای سطوح اصلاح شده توسط پرتودهی لیزر 31
منبع:
[1] بهرامی امیر، میرکاظمی محمد، گلستانی پور مسعود، "مروری بر فرآیندها و تجهیزات تولید مواد نانو"، شبکه آزمایشگاهی نانوتکنولوژی ایران و شرکت کارآفرینی و فناوری ایران (کفا)، تابستان 1387.
[2] J. Yip, K. Chan, K.M. Sin, K.S. Lau, "Study of plasma-etched and laser-irradiated polyamide materials", Materials Research Innovations, Vol. 6, No. 2, PP. 44–50, 2002.
[3] http://www.medicblog.ir/
[4] B. Bhushan, Y.C. Jung, "Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction", Progress in Materials Science, Vol. 56, PP. 1-108, 2011.
[5] Sh. Nourbakhsh, A. Talebian, K. Shabastarizadeh, "Laser Application on surface properties of some fibers", Textile Science and Technology Journal, Vol. 5, No. 1, PP. 103-111, 2010.
[6] J. Yip, K. Chan, K.M. Sin, K.S. Lau, "Comprehensive study of polymer fiber surface modifications Part 1: high-fluence UV-excimer-laser-induced structures", Polymer International, Vol. 53, No. 6, PP. 627–633, 2004.
[7] N.L. Tarwal, P.S. Patil, "Superhydrophobic and Transparent ZnO thin Films Synthesized by Spray Pyrolysis Technique", Applied Surface Science, Vol. 256, PP. 7451–7456, 2010.
[8] H. Miao, F. Bao, L. Cheng, W. Shi, "Cotton Fabric Modification for Imparting High Water and Oil Repellency Using Perfluoroalkyl Phosphate Acrylate via G-Ray-Induced Grafting", Radiation Physics and Chemistry, Vol. 79, PP. 786–790, 2010.
[9] E. Sarantopoulou, "Nano-Modification of Surface Morphology of Teflon AF with VUV Laser Light", physica status solidi, Vol. 204, No. 6, PP. 1843–1850, 2006.
[10] D. Knittel, E. Schollmeyer, "Surface Structuring of Synthetic Polymers by UV-Laser Irradiation. Part IV. Applications of Excimer Laser Induced Surface Modification of Textile Materials", Polymer International, Vol. 45, No. 1, PP. 110-117, 1998.
[11] H. Keshvari, H. Mirzadeh, P. Mansouri, A.R. Shahneh Zare, "Study of fibroblast cells behavior on the acrylic acid co2 pulsed laser grafted silicone elastomer for tissue engineering application", Amirkabir University, Faculty Of Biomedical Engineering, Laser in Medicine, Vol. 5, No. 3-4, PP. 22-28, 2009.
[12] J. Yip, K. Chan, K.M. Sin, K.S. Lau, "UV Excimer laser modification on polyamide materials: effect on the dyeing properties", Materials Research Innovations, Vol. 6, PP. 73–78, 2002.
[13] S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, "An Introduction to Electrospinning and Nanofibers", World Scientific, Singapore, 2005.
[14] Q. Wei (Ed.), "Surface Modification of Textiles", Woodhead Publishing in Textiles, Cambridge, UK, 2009.
[15] R. Dastjerdi, M. Montazer, T. Stegmaier, M. B. Moghadam, "A smart dynamic self-induced orientable multiple size nano-roughness with amphiphilic feature as a stain-repellent hydrophilic surface", Colloids and Surfaces B: Biointerfaces, Vol. 91, PP. 280–90, 2012.
[16] N. Alizadeh, M. Safi, A.A. Yousefi, "PMMA/CB annd PMMA/MWCNTs
nanocomposites: Assessments through Optical Behavior", Iranian Journal of Polymer Science and Technology, Vol. 25, No. 4, PP. 255-263, 2012.
[17] R. Dastjerdi, M. Montazer, S. Shahsavan, "A new method to stabilize nanoparticles on textile surfaces", Colloids and Surfaces B: Biointerfaces, Vol. 345, PP. 202–210, 2009.
[18] H. Yan, K. Kurogi, K. Tsujii, "High oil-repellent poly(alkylpyrrole) films coated with fluorinated alkylsilane by a facile way", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 292, PP. 27-31, 2007.
[19] R. Dastjerdi, M. Montazer, "A review on the application of inorganic nano-structured materials in the modification of textiles : Focus on anti-microbial properties", Colloids and Surfaces B: Biointerfaces, Vol. 79, No. 1, PP. 5–18, 2010.
[20] N. Verplanck, Y. Coffinier, V. Thomy, R. Boukherroub, "Wettability Switching Techniques on Superhydrophobic Surfaces", Nanoscale Research Letters, Vol. 2, No. 12, PP. 577–596, 2007.