فهرست:
فصل اول. مقدمه
1-1- تعریف مسئله..................................................................................................................................... 2
1-2- چالشهای مسئله.............................................................................................................................. 4
1-3- نگاهی به فصول پایاننامه................................................................................................................ 7
فصل دوم. مبانی نظری تحقیق
2-1- مقدمه............................................................................................................................................... 10
2-2- متدهای یادگیری تجمعی............................................................................................................ 11
2-2-1- تعاریف مفاهیم اولیه..................................................................................................... 11
2-2-2- درخت بوستینگ........................................................................................................... 13
2-2-3- درخت بگینگ................................................................................................................ 13
2-3- رندوم فارست.................................................................................................................................. 15
2-3-1- مراحل توسعهی رندوم فارست.................................................................................. 16
2-3-2- تئوریهای مرتبط با رندوم فارست........................................................................... 19
2-3-3- رندوم فارست برای رگرسیون..................................................................................... 22
2-3-4- مزایا و کاربردهای رندوم فارست................................................................................ 23
2-4- نتیجهگیری..................................................................................................................................... 24
فصل سوم. پیشینه تحقیق
3-1- مقدمه............................................................................................................................................... 26
3-2- تعریف مسئله.................................................................................................................................. 26
3-3- روشهای مبتنی بر آنالیزهای سری زمانی............................................................................. 29
3-4- روشهای مبتنی بر مدلهای شبکه عصبی............................................................................ 32
3-5- روشهای مبتنی بر الگوریتمهای دادهکاوی........................................................................... 34
فصل چهارم. معرفی تکنیک پیشنهادی
4-1- مقدمه............................................................................................................................................... 40
4-2- خصوصیات کلی پایگاه داده........................................................................................................ 41
4-3- پایگاه دادهی مورد استفاده.......................................................................................................... 42
4-3-1- دادهی آموزشی............................................................................................................... 44
4-3-2- دادهی آزمایشی.............................................................................................................. 44
4-4- تکنیک پیشنهادی......................................................................................................................... 45
4-4-1- بررسی توزیع جریانهای ترافیکی............................................................................. 47
4-4-2- مرحله پیش پردازش و استخراج ویژگی.................................................................. 50
4-4-3- مرحله شناسایی و تقسیم بندی به Context های مختلف................................ 52
4-4-4- مرحله یادگیری با بکارگیری Context-Aware Random Forest.................. 56
فصل پنجم. نتایج تجربی
5-1- مقدمه............................................................................................................................................... 59
5-2- پایگاه داده........................................................................................................................................ 60
5-3- معیارهای ارزیابی........................................................................................................................... 61
5-3-1- معیار ارزیابی خطای پیشبینی.................................................................................. 61
5-3-2- مقایسه کارآیی معیارهای سنجش فاصله بر روی مشاهدات ترافیکی.............. 62
5-4- بررسی تناسب الگوریتم رندوم فارست در مقایسه با دیگر متدها.................................... 64
5-5- تنظیمات اعمال شده در پیاده سازی الگوریتم (تنظیم پارامترها)................................... 66
5-6- ارزیابی سایز گردآمدگی بر روی دادهی اعتبارسنجی.......................................................... 67
5-7- استخراج مجموعههای نمونههای آموزشی.............................................................................. 70
5-8- نتایج یادگیری الگوریتم بر روی مجموعههای نمونههای آموزشی.................................... 72
فصل ششم. نتیجهگیری
خلاصهی مطالب و نتیجه گیری............................................................................................................ 75
فهرست منابع و مآخذ.......................................................................................................................... 78
منبع:
[1] Ezell, Stephen. "Explaining international IT application leadership: Intelligent transportation systems." (2010).
[2] Box, G. E., and Jenkins, G. M. (1976). Time Series Analysis Forecasting and Control. Holden-Day: San Francisco. MR436499.
[3] Whittaker, J., Garside, S., and Lindveld, K. (1997). “Tracking and predicting a network traffic process.” International Journal of Forecasting, 13(1), 51-61.
[4] Okutani, I., and Stephanedes, Y. J. (1984). “Dynamic prediction of traffic volume through Kalman filtering theory.” Transportation Research Part B: Methodological, 18(1), 1-11.
[5] Davis, G. A., and Nihan, N. L. (1991). “Nonparametric regression and short-term freeway traffic forecasting.” Journal of Transportation Engineering, 117(2), 178-188.
[6] Smith, B. L., Williams, B. M., and Oswald, R. K. (2000). “Parametric and nonparametric traffic volume forecasting.” In National Research Council (US). Transportation Research Board. Meeting (79th: 2000: Washington, DC). Preprint CD-ROM.
[7] Chen, H., and Grant-Muller, S. (2001). “Use of sequential learning for short-term traffic flow forecasting.” Transportation Research Part C: Emerging Technologies, 9(5), 319-336.
[8] Jiang, X., and Adeli, H. (2005). “Dynamic wavelet neural network model for traffic flow forecasting.” Journal of transportation engineering, 131(10), 771-779.
[9] Park, B., Messer, C. J., and Urbanik II, T. (1998). “Short-term freeway traffic volume forecasting using radial basis function neural network.” Transportation Research Record: Journal of the Transportation Research Board, 1651(-1), 39-47.
[10] Abdulhai, B., Porwal, H., and Recker, W. (1999). “Short term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks.”
[11] Vlahogianni, E. I., Karlaftis, M. G., and Golias, J. C. (2005). “Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach.” Transportation Research Part C: Emerging Technologies, 13(3), 211-234.
[12] Chang, S.C., Kim, S.J., and Ahn, M.H., (2000). “Traffic-flow forecasting using time series analysis and artificial neural network: the application of judgmental adjustment.” Presented in the 3rd IEEE International Conference on Intelligent Transportation Systems.
[13] Lee, S., and Fambro, D. B. (1999). “Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting.” Transportation Research Record: Journal of the Transportation Research Board, 1678(-1), 179-188.
[14] Ghosh, B., Basu, B., and O'Mahony, M. (2009). “Multivariate short-term traffic flow forecasting using time-series analysis.” Intelligent Transportation Systems, IEEE Transactions on, 10(2), 246-254.
[15] Nihan, N. L., and Holmesland, K. O. (1980). “Use of the Box and Jenkins time series technique in traffic forecasting.” Transportation, 9(2), 125-143.
[16] Kamarianakis, Y., Kanas, A., and Prastacos, P. (2005). “Modeling traffic volatility dynamics in an urban network.” Transportation Research Record: Journal of the Transportation Research Board, 1923(-1), 18-27.
[17] Ishak, S., and Al-Deek, H. (2003, January). “Statistical Evaluation of I-4 Traffic Prediction System.” In Transportation Research Board 82nd Annual Meeting. Washington, DC.
[18] Hamner, Benjamin. "Predicting Future Traffic Congestion from Automated Traffic Recorder Readings with an Ensemble of Random Forests." Data Mining Workshops (ICDMW), 2010 IEEE International Conference on. IEEE, 2010.
[19] Gil Bellosta, C. J. (2010, December). “A convex combination of models for predicting road traffic.” In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on (pp. 1354-1356). IEEE.
[20] Han, J., and Kamber, M. (2006). Data mining: concepts and techniques. Morgan Kaufmann.
[21] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.
[22] Qi, Yan. Probabilistic models for short term traffic conditions prediction. Diss. Louisiana State University, 2010.
[23] Vlahogianni, E. I. (2009). “Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics.” Journal of Intelligent Transportation Systems, 13(2), 73-84.
[24] Nejad, S. K., Seifi, F., Ahmadi, H., and Seifi, N. (2009, March). “Applying data mining in prediction and classification of urban traffic.” In Computer Science and Information Engineering, 2009 WRI World Congress on (Vol. 3, pp. 674-678). IEEE.
[25] Leshem, G., and Ritov, Y. A. (2007, January). “Traffic flow prediction using adaboost algorithm with random forests as a weak learner.” In Proceedings of the International Conference on Computer, Information, and Systems Science, and Engineering.
[26] Kasabov, N. K. (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering. MIT press.
[27] Schapire, Robert E. "The strength of weak learnability." Machine learning 5.2 (1990): 197-227.
[28] Breiman, Leo. "Bagging predictors." Machine learning 24.2 (1996): 123-140.
[29] Kuncheva, L. I. (2007). “Combining Pattern Classifiers: Methods and Algorithms (Kuncheva, LI; 2004)[book review]”. Neural Networks, IEEE Transactions on, 18(3), 964-964.
[30] Liaw, A., and Wiener, M. (2002). “Classification and Regression by randomForest.” R news, 2(3), 18-22.
[31] Verikas, A., Gelzinis, A., and Bacauskiene, M. (2011). “Mining data with random forests: A survey and results of new tests.” Pattern Recognition, 44(2), 330-349.
[32] Steinberg, D., Golovnya, M., and Cardell, N. S. (2004). “Data Mining with Random Forests™.”
[33] Robnik-Šikonja, M. (2004). “Improving random forests.” Machine Learning: ECML 2004, 359-370.
[34] Tsymbal, A., Pechenizkiy, M., and Cunningham, P. (2006). “Dynamic integration with random forests.” Machine Learning: ECML 2006, 801-808.
[35] Hamed, M. M., Al-Masaeid, H. R., and Said, Z. M. B. (1995). “Short-term prediction of traffic volume in urban arterials.” Journal of Transportation Engineering, 121(3), 249-254.
[36] Mills, T. C. (1991). Time series techniques for economists. Cambridge University Press.
[37] Bollerslev, T. (1986). “Generalized autoregressive conditional heteroskedasticity.” Journal of econometrics, 31(3), 307-327.
[38] Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2003. Statistical and Econometric Methods for Transportation Data Analysis. Chapman and Hall/CRC Press, Boca Raton, FL.
[39] Cristianini, N., and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge university press.
[40] Baum, L. E., and Petrie, T. (1966). “Statistical inference for probabilistic functions of finite state Markov chains.” The Annals of Mathematical Statistics, 37(6), 1554-1563.
[41] Gora, P. (2012, March). “Traffic Simulation Framework.” In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on (pp. 345-349). IEEE.
[42] Wojnarski, M., Gora, P., Szczuka, M., Hung, N. S., Swietlicka, J., and Zeinalipour, D. (2010, December). “IEEE ICDM 2010 Contest: TomTom Traffic Prediction for Intelligent GPS Navigation.” In Data Mining Workshops (ICDMW), 2010 IEEE International Conference on (pp. 1372-1376). IEEE.
[43] Weijermars, Wilhelmina Adriana Maria. Analysis of urban traffic patterns using clustering. University of Twente, 2007.
[44] Allaby, Peter, Bruce Hellinga, and Mara Bullock. "Variable speed limits: Safety and operational impacts of a candidate control strategy for freeway applications." Intelligent Transportation Systems, IEEE Transactions on 8.4 (2007): 671-680.
[45] Smith, B. L., Williams, B. M., and Keith Oswald, R. (2002). “Comparison of parametric and nonparametric models for traffic flow forecasting.” Transportation Research Part C: Emerging Technologies, 10(4), 303-321.
[46] Chen, C., Wang, Y., Li, L., Hu, J., and Zhang, Z. (2012). “The retrieval of intra-day trend and its influence on traffic prediction.” Transportation Research Part C: Emerging Technologies, 22, 103-118.
[47] Dietterich, T. (2000). “Ensemble methods in machine learning.” Multiple classifier systems, 1-15.