فهرست:
فصل اول : مقدمه وکلیات تحقیق.. 1
1-1-مقدمه. 2
1-2-تعریف فشار بخار 2
1-3--عوامل مؤثر برفشار بخار 3
1-3-1-ماهیت مایع. 3
1-3-2-دمای مایع. 3
1-4-بیان مسأله. 3
1-5-توجیه ضرورت انجام تحقیق.. 4
1-6-اهداف تحقیق.. 4
1-7-مراحل انجام تحقیق.. 4
1-8-ساختار تحقیق.. 5
فصل دوم:ادبیات و پیشینه تحقیق.. 7
2-1-مقدمه. 8
2-2-روابط ریاضی تخمین وپیش بینی فشاربخار مواد مختلف.. 9
2-2-1-معادله کلازیوس-کلاپیرون. 9
2-2-2-معادله آنتوان. 10
2-2-2-1-محدودیت های معادله آنتوان. 10
2-2-3-معادله آنتوان توسعه یافته. 10
2-2-4-معادله واگنر. 11
2-2-4-1-محدودیت های معادله واگنر. 12
2-2-5-رابطه حالتهای متناظر ریدل. 12
2-2-6-معادله لی-کسلر. 14
2-2-6-1-محدودیت های رابطه لی-کسلر. 15
2-2-7-معادله فشاربخار آمبروز-پاتل. 15
2-2-7-1-ملاحظات معادله آمبروز-پاتل. 16
2-2-8-روش حالتهای متناظر آمبروز-والتون. 16
2-3-اهمیت روش های نوین پیش بینی و تخمین خواص مواد. 17
2-4-پیشینه روش شبکه های عصبی در تخمین خواص ترمودینامیکی.. 18
2-5-پیش بینی فشاربخار مواد با استفاده از شبکه عصبی مصنوعی.. 19
فصل سوم: روش تحقیق.. 21
3-1-مقدمه. 22
3-2-تاریخچه پیدایش شبکه های عصبی مصنوعی.. 22
3-3-ویژگی های شبکه های عصبی مصنوعی.. 24
3-3-1-قابلیت آموزش.. 24
3-3-2-قابلیت تعمیم. 24
3-3-3-پردازش توزیعی(موازی) 24
3-3-4-تحمل پذیری خطا 25
3-4-ساختار شبکههای عصبی مصنوعی.. 25
3-4-1-مدل نرون با یک ورودی.. 25
3-4-2- مدل نرون با یک بردار به عنوان ورودی.. 26
3-4-3-ساختار یک لایه از شبکه های عصبی.. 27
3-4-4-شبکه های چندلایه. 27
3-4-5-توابع انتقال. 28
3-4-5-1-تابع انتقال سخت محدود. 29
3-4-5-2-تابع انتقال خطی.. 29
3-4-5-3-تابع انتقال لگاریتمی سیگموئید. 30
3-4-5-4-تابع انتقال شعاع مبنا 30
3-4-5-5-تابع انتقال آستانه ای خطی متقارن. 31
3-4-5-6-تابع انتقال تانژانت-سیگموئید. 31
3-5-روش های آموزش شبکه عصبی.. 32
3-6-قواعد یادگیری شبکه های عصبی.. 32
3-6-1-قواعد یادگیری نظارت شده 32
3-6-2-قواعد یادگیری غیرنظارتی.. 33
3-7- شبکه های عصبی پرسپترون. 33
3-7-1-محدودیت های شبکه پرسپترون. 34
3-8- شبکه های عصبی پیشخور 35
3-9-الگوریتم پس انتشار خطا 36
3-10-آموزش شبکه های پس انتشار 37
3-11-بیش برازش شبکه. 37
3-12-بهبود عمومیت شبکه. 38
3-13-پارامترهای اساسی برای طراحی یک شبکه عصبی.. 39
3-13-1-انتخاب مناسب ترین اطلاعات ورودی به شبکه. 39
3-13-2-نحوه ورود داده ها 39
3-13-3-تقسیم بندی داده ها 39
3-13-4-انتخاب مناسب ترین تعداد نرون های لایه پنهان. 40
3-12-معیارهای ارزیابی کارایی مدل. 40
3-12-نرم افزار استفاده شده در این تحقیق.. 41
فصل 4: محاسبات و یافته های تحقیق.. 42
4-1-مقدمه. 43
4-2-طراحی شبکه عصبی مصنوعی برای هیدروکربن های آروماتیکی.. 43
4-3- طراحی شبکه عصبی مصنوعی برای آلکان ها و آلکن ها 52
4-4- طراحی شبکه عصبی مصنوعی برای الکل ها .6
4-5- طراحی شبکه عصبی مصنوعی برای آلکیل سیکلو هگزان ها 68
فصل پنجم: نتیجه گیری و پیشنهادها 77
5-1-نتیجه گیری.. 78
5-2-پیشنهادات برای تحقیقات آتی.. 79
مراجع. 80
منبع:
[1] Ch. E. Mortimer, Chemistry, First edition,Wadsworth, United States, 1983.
[2] E.D. Rogdakis, P.A. Lolos, Simple generalized vapour pressure- and boiling point correlation for refrigerants, International Journal of Refrigeration,vol. 29, 2006, pp. 632–644.
[3] H. An, W. Yang, A new generalized correlation for accurate vapor pressure prediction, Chemical Physics Letters,vol. 543, 2012, pp. 188–192.
[4] L.A. Forero, J.A. Velasquez, Wagner liquid–vapour pressure equation constants from a simple methodology,The Journal of Chemical Thermodynamics,vol. 43, 2011, pp. 1235–1251.
[5] K. K. Park, A differential equation for vapor pressure as a function of temperature, Fluid Phase Equilibria,vol. 290, 2010,pp. 158–165.
[6] D. Richon, S. Laugier, Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data, Fluid phase equilibria,vol. 210, 2003, pp. 247 -255.
[7] M.G. Schaap, W. Bouten, Modelling water retention curves of sandy soils using neural networks, Water Resources Research,vol. 32, 1996, pp. 3033-3040.
[8] D.L. Civco, Y. Wanug, Classification of multispectral, multitemporal, multisource, Spatial data using artificial neural networks, Congress on Surveying and Mapping, USA,1994.
[9] J.A. Benediktsson , P.H. Swain, O.K. Erosy, Neural network approaches versus statistical methods in classification of multisource remote Sensing data, IEEE Transaction on
Geosciences and Remote Sensing,vol. 28,1990, pp. 540-551.
[10] M. Edalat, R.B. Bozarjomehri, a new vapor pressure equation,journal of engineering,Islamic republic of iran, vol. 3 , 1990, pp. 98-103.
[11] E. M. Suuberg; V. Oja, Vapor pressure and heats of vaporization of primary coal tars, US Department of Energy (US), United States,1997,PP.17-19.
[12] B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids,fifth ed., McGraw-Hill, New York, 2001.
[13] T. Boublik, V. Fried, E. Hala, The Vapour Pressures of Pure Substances. Selected values of the temperature dependence of the vapour pressures of some pure substances in the normal and low pressure region, 2nd Edition , Elsevier,Amsterdam,1984.
[14] R. M. Stephenson,S. Malanowski, D. Ambrose, Handbook of the thermodynamics of
organic compounds, Elsevier, New York, 1987.
[15] C.L. Yaws,The Yaws handbook of vapor pressure :Antoine coefficients,Gulf,Houston,2007.
[16] W. Wagner, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics,vol. 13, 1973,pp. 470–482.
[17] L.A. Forero, J.A. Velasquez, Wagner liquid–vapour pressure equation constants from a simple methodology, The Journal of Chemical Thermodynamics,vol. 43, 2011,pp. 1235–1251.
[18] K. Ruzicka, V. Majer, Simple and controlled extrapolation of vapor pressures toward the triple point. AIChE Journal,vol. 42, 1996, pp. 1723-1740.
[19] B.I. Lee, M.G. Kesler, A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States, AIChE Journal,vol. 21, 1975,pp. 510-527.
[20] W.Guo dong, J. H . Lienhard, Corresponding States Correlation of Saturated and Metastable Properties, The canadian journal of chemical engineering,vol. 64,1986, PP.158-161.
[21] D. Ambrose, N. C. Patel,The correlation and estimation of vapour pressures IV. Extrapolation of vapour pressures and estimation of critical pressures by the principle of corresponding states using two reference fluids with non-spherical molecules, The Journal of Chemical Thermodynamics, Vol. 16,1984, PP. 459–468.
[22] D. Ambrose, and J. Walton, Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols, Pure and Applied Chemistry,vol 61 , 1989, pp.1395-1403 .
[23] A. Sozen, M. Ozalp , E. Arcaklioglu, Calculation for the thermodynamic properties of an alternative refrigerant (R508b) using artificial neural network, Applied Thermal Engineering, vol. 27, 2007,pp. 551–559.
[24] A. Sencan,S.A. Kalogirou,A new approach using artificial neural networks for determination of the thermodynamic properties of fluid couples, Energy Conversion and Management,vol. 46, 2005,pp. 2405–2418.
[25] J. Taskinen, J. Yliruusi, Prediction of physicochemical properties based on neural network modelling, Advanced Drug Delivery Reviews,vol. 55, 2003,pp. 1163–1183.
[26] A. A. Rohani , Gh. Pazuki , H. Abedini Najafabadi , S. Seyfi ,M. Vossoughi, Comparison between the artificial neural network system and SAFT equation in obtaining vapor pressure and liquid density of pure alcohols, Expert Systems with Applications,vol. 38, 2011,pp. 1738–1747.
[27] S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review, Progress in Energy and Combustion Science,vol 29 , 2003,pp. 515–566.
[28] V. D. Nguyen, R. R. Tan , Y. Brondial , T. Fuchino, Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks, Fluid Phase Equilibria,vol. 254, 2007,pp. 188–197.
[29] M. Lashkarbolookia, , Z. S. Shafipoura, A. Zeinolabedini Hezavea, H. Farmanib, Use of artificial neural networks for prediction of phase equilibria in the binary system containing carbon dioxide, Journal of Supercritical Fluids,vol. 75, 2013,pp. 144– 151.
[30] F. Ghaderi, A. H. Ghaderi, B. Najafi, N. Ghaderi, Viscosity prediction by computational method and artificial neural network approach: The case of six refrigerants, Journal of Supercritical Fluids,vol. 81, 2013,pp. 67– 78.
[31] M. Moosavi, N. Soltani, Prediction of hydrocarbon densities using an artificial neural network–group contribution method up to high temperatures and pressures, Thermochimica Acta ,vol. 556, 2013,pp. 89– 96.
[32] R. kuhne, R. uwe ebert, G. schuurmann, estimation of vapor pressure for hydrocarbons and halogened hydrokarbons from chemical structure by a neural network,chemosphere,vol. 34, 1997 pp.671-686.
[33] J. A. Lazzus, Prediction of solid vapor pressures for organic and inorganiccompounds using a neural network, Thermochimica Acta,vol. 489, 2009,pp. 53–62.
[34]A. Moghadassi, M. Nikkholgh, S.M. Hosseini, F. Parvizian, Estimation of vapor pressures, compressed liquid, and supercritical densities for sulfur dioxide using artificial neural networks, International Journal of Industrial Chemistry,vol. 4, 2013.pp. 1-8.
[35] E .S. Goll, P.C. Jurs, Prediction of vapor pressures of hydrocarbons and halohydrocarbons from molecular structure with a computational neural network, Journal of Chemical Information and Computer Sciences ,vol. 39, 1999,pp. 1081–1089.
[36] R.O. Strobl, F. Forte ,Artificial neural network exploration of the influential
factors in drainage network derivation, Hydrological Processes, vol. 21,2007, pp. 2965-2978.
[37] C.H. Dagli ,Artificial neural networks for intelligent manufacturing, First Edition, Chapman & Hall, England,1994.
[38] J.K. Wu, Neural networks and simulation methods, Marcel Dekker , New York,1994.
[39] H. Debar, M. Becker, D. Siboni, A Neural Network Component for An Intrusion Detection System, IEEE Computer Society Symposium, 1992, pp. 240-250.
[40] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegel, G. Vigna, A Parallel Architecture for Stateful, High-Speed Intrusion Detection, Proceeding of the ICISS Proceedings of the 4th International Conference on Information Systems Security, 2008, pp. 203 – 220.
[41] S. Haykin ,Neural networks: A comprehensive foundation, 2nd dition, Prentice Hall, NewJersey, USA,1999.
[42] B. Minasny , A.B. Mcbratney,The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal.,vol. 66,2002, pp.352-361.
[43] J.A. Benediktsson, P.H. Swain, O.K. Erosy ,Neural network approaches versus statistical methods in classification of multisource remote Sensing data, IEEE Transaction on Geosciences and Remote Sensing,vol. 28,1990,pp. 540-551.
[44] D.E. Rumelhart, G.E. Hinton, R.J. Williams ,Learning representations by backpropagating errors, Nature, vol.323 ,1986, pp. 533-536.
[45] G. Zambrano, Development of Neural Network Models for the Prediction of Dew point Pressure of Retrograde Gases and Saturated Oil Viscosity of Black Oil Systems, M. S. Thesis, Texas A&M University, Texas, 2002.
[46] A. Vellido, P.J.G. Liboa, J. Vaughan, Neural networks in business: a survey of applications. Expert Systems with Application,vol. 17,1999, PP. 51-70.
[47] N.D. Gupta, S. Kate, A. Neural networks in business: techniques and applications for the operations researcher. Computers & Operations Research,vol. 27 ,2000, PP. 1023-1044.
[48] A. B. Bulsari, Neural Networks for Chemical Engineers, Elsevier, Amsterdam,1995.
[50] H. R. Valles , A neural network method to predict activity coefficients for binary systems based on molecular functional group contribution, M. S. Thesis, University of Puerto Rico ,2006.
[51] E. A. Osman , M. A. Al-MArhoun, Using artificial neural networks to develop new PVT correlations for Saudi crude oils, 10th Abu Dhabi International Petroleum exhibition and conference, 2002.
[52] A. Chouai,S. Laugier,D. Richon, Modeling of thermodynamic properties using neural networks application to refrigerants, Fluid Phase Equilibr,vol. 199, 2002,pp. 53-60.
[54] S. Ganguly, Prediction of VLE data using radial basis function network, Computers and chemical engineering,vol. 27,2003, pp. 1445-1452.
[55] O. Depren, M. Topallar, E. Anarim, M.K. Ciliz, An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks, Expert Systems with Applications, vol. 29, 2005, pp. 713–722.
[56] L. Foschini, A. V. Thapliyal, L. Cavallaro, C. Kruegel, G. Vigna, A Parallel Architecture for Stateful, High-Speed Intrusion Detection, Proceeding of the ICISS '08 Proceedings of the 4th International Conference on Information Systems Security, 2008, pp. 203 – 220.
[57] G. Wang, J. Hao, J. Ma, L. Huang, A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering, in Expert Systems with Applications, vol. 37, 2010, pp. 6225–6232.
[58] R. Gharbi, Estimating the isothermal compressibility coefficient of under saturated Middle East crudes using neural networks, Energy & Fuels,vol. 11,1997, pp. 372-379.
[59] J. M. Prausnitz, R. N. Lichtenthaler, E. G. Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria,Third Edition, New Jersey,1999.
[60] T. E. Daubert, R. P. Danner, H. M. Sibel, C. C. Stebbins, Physical and Thermodynamic
Properties of Pure Chemicals: Data Compilation, Taylor & Francis, Washington, 1997.
[61]C. L. Yaws,Thermodynamic and Physical Property Data, Gulf Pub. Co., Houston, 1992.
[62] I. Mokbel ,E. Rauzy ,J.P. Meille ,J. Jose, Low vapor pressures of 12 aromatic hydrocarbons. Experimental and calculated data using a group contributio method, Fluid Phase Equilibria,vol. 147,1998, pp.271–284.
[63] H. Miyamoto, J. Takemura, M. Uematsu, Vapour pressures of isobutane at T = (310 to 407) K, The Journal of Chemical Thermodynamics ,vol. 36 ,2004, pp. 919–923.
[64] M. B. Ewing, J. C. Sanchez Ochoa, Vapour pressures of n-pentane determined by comparative ebulliometry, The Journal of Chemical Thermodynamics ,vol. 38 ,2006, pp. 289–295.
[65]M. B. Ewing, J. C. Sanchez Ochoa, Vapour pressures of n-hexane determined by comparative ebulliometry ,The Journal of Chemical Thermodynamics,vol. 38 ,2006, pp.283–288.
[66]M.B. Ewing, J.C. Sanchez Ochoa, The vapour pressures of n-octane determined using
comparative ebulliometry, Fluid Phase Equilibria,vol. 210 ,2003, pp. 277–285.
[67]E. Ch. Ihmels, K. Fischer, J. U. Gmehling, Thermodynamic properties of the butenes Part I. Experimental densities, vapor pressures, and critical points, Fluid Phase Equilibria, Vols. 228–229,2005, pp. 155–171.
[68]M. Censky , V. Rohac , K. Ru zic kaa , M. Fulema, K. Aimc, Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 1, Fluid Phase Equilibria,vol. 298,2010,pp.192–198.
[69]M. Censky , V. Rohac , K. Ru zic kaa , M. Fulema,b, K. Aimc, Vapor pressure of selected aliphatic alcohols by ebulliometry. Part 2, Fluid Phase Equilibria,vol. 298 2010,pp. 199–205.
[70]A. Brozena, Vapor pressure of 1-octanol below 5 kPa using DSC, Thermochimica Acta,vol 561 2013,pp. 72– 76.
[71] I. Mokbel, E. Rauzy, H. loiseleur,c. Berr.,j. Jose., Vapor pressures of 12 alkylcyclohexanes, cyclopentane, butylcyclopentane and trans-decahydronaphthalene down to 0.5 Pa. Experimental results, correlation and prediction by an equation of state, Fluid Phase Equilibria, vol.108, 1995,pp.103-120.