فهرست:
فصل 1 مقدمه ............................................................................................................................. 1
فصل 2 شرح مسئله ................................................................................................................... 5
2-1 بیان مسئله ............................................................................................................................................. 6
2-2 ورودی-فرضها-خروجی ..................................................................................................................... 7
2-3 هدف ........................................................................................................................................................ 8
2-4 معیار ارزیابی .......................................................................................................................................... 8
2-5 نتایج موردانتظار .................................................................................................................................. 9
2-6 خلاصه فصل ........................................................................................................................................ 10
فصل 3 مفاهیم پایهای ............................................................................................................ 11
3-1 مفاهیم مربوط به پردازش تصویر و بخشبندی ............................................................................ 12
3-1-1 تشخیص لبه با استفاده از روش سوبل .................................................................................. 13
3-1-2 بخشبندی تصویر ...................................................................................................................... 13
3-1-3 تحلیل مؤلفههای اصلی ............................................................................................................ 14
3-1-4 اطلاعات محلی و مکانی پیکسلها ........................................................................................ 14
3-2 الگوریتم K-means ............................................................................................................................ 15
3-3 الگوریتم رقابت استعماری ................................................................................................................. 15
3-4 خلاصه فصل ........................................................................................................................................ 17
فصل 4 راهکارهای گذشته ..................................................................................................... 18
4-1 استفاده از خوشهبندی c-means فازی به همراه جمله جریمه برای بخشبندی تصویر ........ 19
4-2 بخشبندی تصویر با استفاده از الگوریتم ژنتیک مبتنی بر روش خوشهبندی فازی .............. 21
4-3 الگوریتم FCMS .................................................................................................................................. 22
4-4 الگوریتم EnFCM ............................................................................................................................... 22
4-5 الگوریتم FGFCM .............................................................................................................................. 23
4-6 الگوریتم خوشهبندی فازی مبتنی بر انتخاب بهینه و اطلاعات همسایگی سازگار ................ 23
4-7 خلاصه فصل ......................................................................................................................................... 24
فصل 5 راهکار پیشنهادی ..................................................................................................... 25
5-1 جمعآوری اطلاعات غیرمحلی تصویر .............................................................................................. 27
5-1-1 محاسبه وزن در جمعآوری اطلاعات غیرمحلی .................................................................. 27
5-1-2 محاسبه مقدار ویژگی میانگین وزندار غیرمحلی .............................................................. 31
5-2 ترکیب الگوریتم رقابت استعماری و الگوریتم K-means........................................................... 31
5-3 الگوریتم رقابت استعماری بهبود یافته پیشنهادی برای بخشبندی تصویر ........................... 32
5-3-1 کدگذاری .................................................................................................................................... 32
5-3-2 عملگر جذب .............................................................................................................................. 33
5-3-3 عملگر انقلاب ............................................................................................................................ 34
5-3-4 عملگر جدید حرکت استعمارگرها ....................................................................................... 34
5-3-5 عملگر جدید جستجوی فضای اطراف قویترین استعمارگر .......................................... 35
5-3-6 تابع هزینه الگوریتم NLICA ................................................................................................ 36
5-4 پسپردازش ساده .............................................................................................................................. 36
5-5 خلاصه فصل ....................................................................................................................................... 38
فصل 6 ارزیابی و نتایج عملی ............................................................................................. 40
6-1 معرفی تصاویر محک ....................................................................................................................... 41
6-2 تحلیل نتایج الگوریتم NLICA ...................................................................................................... 43
6-2-1 تحلیل نتایج بخشبندی تصاویر مصنوعی ......................................................................... 44
6-2-2 تحلیل نتایج بخشبندی تصاویر طبیعی ............................................................................ 47
6-3 پایداری الگوریتم NLICA ........................................................................................................... 52
6-4 همگرایی الگوریتم NLICA ......................................................................................................... 56
6-5 آزمونهای آماری ........................................................................................................................... 57
6-5-1 نمودار چندک-چندک ........................................................................................................ 59
6-5-2 آزمون کولموگروف-اسمیرنوف .......................................................................................... 60
6-5-3 آزمون ویلکاکسون رتبهای ................................................................................................. 61
6-6 تحلیل کلی نتایج ......................................................................................................................... 63
6-7 خلاصه فصل ................................................................................................................................. 64
فصل 7 نتیجهگیری و راهکارهای آتی .............................................................................. 64
7-1 نتیجهگیری ..................................................................................................................................... 65
7-2 راهکارهای آتی ................................................................................................................................ 66
واژهنامه ............................................................................................................................. 67
مراجع ............................................................................................................................... 72
منبع:
[1] Ahmed, M.N., Yamany. S.M., Mohamed, N., Farag, A.A., & Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging21(3), pp. 193-199, 2002.
[2] Chen, S., Zhang, D., Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure, IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 4, pp. 1907-1916, 2004.
[3] Szilagy, L. Benyo, Z., Szilagyi, S.M., & Adam, H.S., MR brain image segmentation using an enhanced fuzzy c-means algorithm, In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, vol. 1, pp. 17-21, 2003.
[4] Cai, W.L., Chen, S.C., & Zhang, D.Q., Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 40(7), pp. 825-838, 2007.
[5] Halder, A., & Pathak, N., An Evolutionary dynamic clustering based color image segmentation, International journal of image processing, vol. 4, pp. 549-556, 2011.
[6] Zhao, F., Fan, J., & Liu, H., Optimal-selection-based fuzzy c-means clustering algorithm with self tuning nonlocal spatial information for image segmentation, Expert systems with applications 41, pp. 4083-4093, 2014.
[7] Yang, Y., &Huang, Sh., Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term, Computing and informatics, vol. 26, pp. 17-31, 2007.
[8] Zhang, L., Dong, W., Zhang, D., Shi, G., Two-stage image denoising by principal component analysis with local pixel grouping, Pattern recognition, pp. 1531-1549, 2010.
[9] Tasdizen, T., Principal neighborhood dictionaries for non-local means image denoising, IEEE Transactions on Image Processing, vol. 18, no. 12, 2649-2660, 2009.
[10] Buades, A., Coll, B., & Morel, J.M., Nonlocal image and movie denoising, International Journal of Computer Vision, vol. 76, 123-139, 2008.
[11] Felzenszwalb, P. F., & Huttenlocher, D. P., Efficient graph-based image segmentation, International Journal of Computer Vision, vol. 59, pp. 167-181, 2004.
[12] Gonzalez, R. C., & Woods, R. E., Digital Image Processing(3rd ed.), Newyork: Prentice Hall, 2007.
[13] Han, Y. F., & Shi, P. F., An improved ant colony algorithm for fuzzy clustering in image segmentation, Neurocomputing, vol. 70, 665-671, 2007.
[14] Hathaway, R. J., & Bezdek, J. C., Extending fuzzy and probabilistic clustering for very large data sets, Computational Statistics & Data Analysis, vol. 51, 215-234, 2006.
[15] Liu, H. Q., Jiao, L. C., & Zhao, F., Nonlocal spatial-spectral clustering for image segmentation, Neurocomputing, 74(1-3), 461-471, 2011.
[16] Atashpaz-Gargari, E., Lucas, C., Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, IEEE congress on Evolutionary Computation, 4661-4667, 2007.
[17] Xie, Z., Wang, S., & Chung, F. L., An enhanced possibilistic c-means clustering algorithm, soft computing, 12, 593-611, 2008.
[18] Zhang, H., Fritts, J., E., & Goldman, S. A., Image segmentation evaluation: A survey of unsupervised methods, Computer Vision & Image understanding, 110(2), 260-280, 2008.
[19] Zhao, F., Jiao, L. C., & Liu, H. Q., Fuzzy c-means clustering with non local spatial information for noisy image segmentation, Frontiers of Computer Science in china5, 45-56, 2011
[20] Saad, M. F., & Alimi, A. M., Improved modified suppressed fuzzy c-means, In Proccedings of 2nd international conference on image processing theory tools and applications (IPTA), pp. 313-318, IEEE, 2010.
[21] Portela, N., M., Cavalcanti, G. D. C., & Ren, T. I., Semi supervised clustering for MR brain image segmentation, Expert Systems with Applications, 41(4, part 1), 1492-1497, 2014.
[22] Osher, S., & Paragios, N., Geometric level set methods in imaging vision, and graphics. Newyork: Springer-Verlag, 2003.
[23] Hung, W. L., Chen, D. H., & Yang, M. S., Suppressed fuzzy-soft learning vector quantization for MRI segmentation, Artificial Intelligence in Medicine, 52(1), 33- 43, 2011.
[24] Julesz, B., Visual Pattern Discrimination, IRE Trans. Information Theory, vol. 8, pp. 84-92, 1962.
[25] Varma, M., & Zisserman, A., “A statistical approach to material classification using image patches,” IEEE Trans. Pattern Analysis and Machine Intelligance, vol. 31, no. 11, pp. 2032-2047, 2009.
[26] Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C., “Local features and kernels for classification of texture and object categories: A Comprehensive Study”, Int’l J. Computer Vision, vol. 73, no. 2, pp. 213-238, 2007.
[27] Biau, G., Devroye, L., & Lugosi, G., “On the Performance of Clustering in Hilbert Spaces”, IEEE Trans. Information Theory, vol. 54, no. 2, pp. 781-790, 2008.
[28] Sivanandam, S.N. & Deepa, S.N., Introduction to Genetic Algorithms, 1 ed.: Springer, 2007.
]29 [بایزیدی، ا.، اولادی، ب.، و عباسی، ن.، تحلیل دادههای پرسشنامهای به کمک نرمافزار SPSS، چاپ چهارم، انتشارات عابد، 1391.
[30] Deledalle, C. A., Salmon, J., & Dalalyan, A., Image denoising with patch based PCA: Local versus Global, The 22nd British Machine Vision Conference, 2011.
[31] Bhaduri, A., Bhaduri, A., Color Image Segmentation Using Clonal-Selection Based Shuffled Frog Leaping Algorithm, Advances in Recent Technologies in Communication and Computing, ARTCom '09. International Conference on, 2009.
[32] available from http://www.didehbonyan.com/rz/محتوایعلمی/مشاهدهمقاله/tabid/113/ArticleId/44/.aspx