فصل اول:
هدف، پیشینه تحقیق و روش کار
هدف:
بررسی خواص اساسی از زیر مدول های اول و خواص -M رادیکالها و هدف نهایی بررسی مفاهیم پوش یک زیر مدول و برهان قضیه 1 و 2 گفته شده در مقدمه و چکیده پایان نامه می باشد.
پیشینه تحقیق و روش کار:
برای گردآوری این پایان نامه از ژورنالهای مختلف ریاضی در گرایش جبر موجود در کتابخانه های معتبر مانند IPM استفاده شده است و هنوز در هیچ کتاب درسی در سطح کارشناسی ارشد و دکترا مفاهیم فوق نوشته و بررسی نشده است.
فصل دوم:
تعاریف و قضایای مقدماتی
تعریف(1-2): مجموعه R همراه با دو عمل دوتائی + و . را یک حلقه گوئیم اگر،
الف) (R , +) یک گروه آبلی باشد.
ب) به ازاء R a,b,c ، a(b c) = (a b)c
ج) به ازاء هر R a,b,c
(قانون توزیع پذیری چپ) a(b+c) = ab+ac
(قانون توزیع پذیری راست) (b+c) a= ba+ca
تعریف(2-2): حلقه R را تعویض پذیر(یا جابجائی) گوئیم هر گاه:
تعریف(3-2): اگر حلقه R نسبت به عمل ضرب دارای عضو همانی باشد آنگاه این عضو را با 1R، یا به طور ساده با 1، نمایش می دهیم و آن را یکه R می نامیم
تذکر: در سراسر پایان نامه R حلقه جابجایی و یکدار فرض می شود.
تذکر: اگر R حلقه ای یکدار بوده و به ازاء هر داشته باشیم ab=ba=1 آنگاه a را یک واحد(یا عضو وارون پذیری) می نامیم.
تعریف(4-2): گوئیم حلقه R بدون مقسوم علیه صفر است هر گاه:
یا
تعریف(5-2): هر حلقه جابجائی، یکدار و بدون مقسوم علیه صفر را دامنه صحیح می نامیم.
تعریف(6-2): زیر مجموعه S از حلقه R یک زیر حلقه R است اگر:
تعریف(7-2): زیر حلقه I از R را ایده آل R نامیم هر گاه:
تعریف(8-2): ایده آل I از حلقه R را، ایده آل سره نامند هر گاه: و می نویسیم :
تعریف(9-2): ایده آل P از حلقه R را ایده آل اول نامند هر گاه:
یا
تعریف(10-2): اگر I یک ایده آل از حلقه R باشد آنگاه:
را حلقه خارج قسمتی R بر I نامند.
تذکر: اگر R جابجائی و یکدار باشد آنگاه نیز جابجائی و یکدار است.
لم(11-2): فرض کنید P ایده آل حلقه R باشد آنگاه:
P ایده آل اول است اگر و تنها اگر دامنه صحیح باشد.
تعریف(12-2): دامنه صحیح D را دامنه ددکنید نامند هر گاه هر ایده آل آن به صورت حاصل ضرب، ایده آلهای اول باشد.
تعریف(13-2): ایده آل سره M از حلقه R را ایده آل ماکزیمال نامند هر گاه M داخل هیچ ایده آل سره از R قرار نگیرد.
تعریف(14-2): فرض کنیم R حلقه جابجائی و یکدار باشد. در این صورت R را یک میدان نامیم هر گاه هر عضو ناصفر آن دارای وارون ضربی باشد.
لم(15-2): فرض کنیم R حلقه و M ایده آلی از حلقه R باشد آنگاه:
M یک ایده آل ماکزیمال R است اگر و تنها اگر میدان باشد.
تعریف(16-2): فرض کنیم X زیر مجموعه ای از حلقه R باشد. فرض کنیم خانواده همه
ایده آلهای R شامل X باشد. آنگاه را ایده آل تولید شده توسط X نامیده و با علامت(X) نمایش
می دهند.
تذکر: علامت X مولدهای ایده آل(X) نامیده می شود.
اگر در این صورت گویند(X) یک ایده آل متناهیا تولید شده است.
تذکر: در حالت خاص وقتی که X={a} باشد داریم:
تعریف(17-2): حلقه R را یک حوزه ایده آل اصلی نامیم هر گاه R حوزه صحیح باشد و هر ایده آل آن توسط یک عضو تولید شود.
تعریف(18-2): در حلقه R، گوئیم عنصر b,a را می شمارد و می نویسیم a | b هر گاه:
تعریف(19-2): عنصر p را در حلقه R اول گوییم هر گاه:
یا
تعریف(20-2): حلقه R را حوزه تجزیه یکتا گویند هر گاه R حوزه صحیح باشد و هر عضو آن را بتوان به صورت حاصلضرب متناهی و منحصر بفرد از عناصر اول نوشت.
تعریف(21-2): ایده آل P از حلقه R را یک ایده آل اولیه نامیم هر گاه اولا و ثانیا
تعریف(22-2): فرض کنیم I ایده آل حلقه R باشد. رادیکال ایده آل I را به صورت نمایش می دهند و عبارت است از:
لم(23-2): اگر R یک حلقه و I ایده آلی از حلقه R باشد در اینصورت که در آن P ایده آل اول حلقه R و شامل I است.
لم(24-2): اگر P یک ایده آل اولیه باشد آنگاه رادیکال P یک ایده آل اول است.
تعریف(25-2): فرض کنیم Q یک ایده آل اولیه باشد و داشته باشیم ، آنگاه گوئیم Q یک ایده آل -P اولیه است.
مثال(26-2): در حلقه Z از اعداد صحیح به ازاء هر عدد اول p ایده آل تولید شده توسط p که آن را به صورت(p) نمایش می دهیم یک ایده آل اول است.
مثال(27-2): ایده آلهای (p4) , (p3) , (p2) و ... و ایده آلهای اولیه هستند زیرا:
پس (pn) یک -(p) اولیه است.
تعریف(28-2): عنصر a در حلقه R را خودتوان گوئیم هر گاه a2=a.
تعریف(29-2): ایده آل I از حلقه R را ایده آل رادیکال نامند هر گاه .
تعریف(30-2): فرض کنیم R' . R دو حلقه باشند نگاشت را یک همومورفیسم حلقه نامند هر گاه:
تذکر: اگر f پوشا نیز باشد یک اپی مرفیسم و اگر f یک به یک باشد آنگاه f یک منومورفیسم نامیده
می شود.
تعریف(31-2): اگر f اپی مرفیسم و منومرفیسم باشد آنگاه f یک ایزومرفیسم نامیده می شود.
تعریف(32-2): فرض کنیم R یک حلقه یکدار و M گروهی آبلی باشد. اگر تابعی مانند
موجود باشد به قسمی که در شرایط زیر صدق کند گوئیم M یک -R مدول چپ است.
تذکر: -R مدول راست مشابها تعریف شود.
تعریف(33-2): فرض کنیم M یک -R مدول، و N زیر مجموعه غیر تهی از M باشد در اینصورت گوئیم N زیر مدول M است و می نویسیم هر گاه:
(1
(2
تعریف(34-2): منظور از زیر مدول تولید شده توسط m از -R مدول M، مجموعه ای به صورت زیر است:
تعریف(35-2): فرض کنیم P یک زیر مدول از -R مدول M باشد. گوئیم P زیر مدول سره M است هر گاه باشد.
تعریف(36-2): فرض کنیم R یک حلقه و F یک -R مدول باشد. در اینصورت گوئیم F یک -R مدول آزاد است هر گاه خانواده از عناصر F موجود باشد به قسمی که هر عضو F را بتوان به صورت منحصر به فرد از ترکیبات خطی این عناصر نوشت. بعبارت دیگر:
تعریف(37-2): فرض کنیم M و N دو R مدول باشند. در اینصورت نگاشت f از M به توی N را یک همریختی R- مدولی بین M و N نامید هر گاه شرایط زیر برقرار باشد:
تعریف(38-2): اگر یک همریختی -R مدولهای M و N باشد منظور از هسته f و تصویر f مجموعه هایی به شکل زیر هستند:
لم(39-2): اگر یک همزیختی -R مدولی باشد در اینصورت Kerf , Imf به ترتیب زیر مدولهای N و M هستند.
قضیه(40-2): فرض کنیم یک همریختی -R مدولی باشد و فرض کنیم A زیر مدول M و B زیر مدول N باشد. در اینصورت f(A) و f-1(B) به ترتیب زیر مدولهای N و M هستند و بالاخره:
قضیه(41-2): اگر یک اپی مرفیسم باشد در اینصورت تناظری یک به یک بین زیر مدولهای A از M که شامل Kerf هستند و زیر مدولهای B از N برقرار است و این تناظر، حافظ جزئیت است یعنی:
تعریف(42-2): فرض کنیم A یک -R مدول و P زیر مدول آن باشد. گوییم P زیر مدول اول A است هر گاه باشد و برای و از بتوانیم نتیجه بگیریم که .
تعریف(43-2): زیر مدول N از -R مدول M را اولیه نامند هر گاه:
1) N زیر مدول سره M باشد.
2) یا
تعریف(44-2): فرض کنیم R یک حلقه و B یک -R مدول باشد. در اینصورت پوچساز B مجموعه ای به صورت زیر می باشد:
تعریف(45-2): -R مدول M را تابدار گویند هر گاه برای هر عضو مخالف صفر M مثل .
تعریف(46-2): -R مدول M را بدون تاب گوئیم هر گاه برای هر و برای هر ، اگر داشته باشیم rm=0 بتوان نتیجه گرفت که r=0 یا m=0 .
تعریف(47-2): -R مدول M را متناهیا تولید شده گویند هر گاه اعضاء در M موجود باشد به طوریکه هر عضو M را بتوان به صورت ترکیب خطی از این عناصر با ضرایب در R نوشت.
تعریف(48-2): فرض کنیم R حلقه و M یک -R مدول باشد. در اینصورت گوئیم M در شرط زنجیری صعودی(A.C.C) برای زیر مدولهایش صدق می کند هر گاه هر زنجیر صعودی از زیر مدولهایش ایستا باشد. یعنی برای هر زنجیر صعودی به صورت زیر:
ی موجود باشد بطوریکه برای هر k که داشته باشیم Mn=Mk .
تعریف(49-2): حلقه R را یک حلقه نوتری می گوئیم هر گاه هر زنجیر صعودی از ایده آل هایش ایستا باشد یعنی اگر:
یک زنجیر صعودی دلخواه از ایده آلهای R باشد آنگاه موجود باشد، به طوریکه برای هر داشته باشیم:
تعریف(50-2): حلقه R را آرتینی می گوئیم هر گاه هر زنجیر نزولی از ایده آل هایش ایستا باشد یعنی اگر
منابع فارسی:
1) جبر، توماس دبلیو، هانگرفورد، ترجمه دکتر علی اکبر عالم زاده، دکتر حسین ذاکری، مرکز دانشگاهی.
2) گامهایی در جبر تعویض پذیر، رودنی شارپ، ترجمه محمدمهدی ابراهیمی، انتشارات پژوهش.
منابع انگلیسی:
1) B.R.McDonald. Linear Algebra Over Commutative Rings. Pure and Applied Mathematics. 1984.
2) C.P.Lu. ‘Prime Submodules of Modules’ Commentarii Mathematici, Vol.33 No.1(1984).61-69.
3) C.P.Lu.M-Radicals of Submodules In Modules.(1988).211-216.
4) D.G.Northcott. Lesson on Rings, Modules and Multiplicites, Cambridge university Press. 1968.
5) F.W. Anderson, K.P. Fuller. Rings and Categoris of Modules. 1974.
6) M.Gray. A radical Approach to Algebra. Addison Wesley, Reading Mass. 1970.
7) N. Bourbaki.Algebre Commutative, Chapters. 3,4, Hermann, Paris. 1961.
8) R. McCasland and M. Moore. On radicals of submodules of finitely generated modules. Canada. Math. Bull. Vol.29(1)(1986).37-39.
9) Z.El- Bast and P. Smith. Multiplication modules, Communi cation, Algebra, 16منابع فارسی:
1) جبر، توماس دبلیو، هانگرفورد، ترجمه دکتر علی اکبر عالم زاده، دکتر حسین ذاکری، مرکز دانشگاهی.
2) گامهایی در جبر تعویض پذیر، رودنی شارپ، ترجمه محمدمهدی ابراهیمی، انتشارات پژوهش.
منابع انگلیسی:
1) B.R.McDonald. Linear Algebra Over Commutative Rings. Pure and Applied Mathematics. 1984.
2) C.P.Lu. ‘Prime Submodules of Modules’ Commentarii Mathematici, Vol.33 No.1(1984).61-69.
3) C.P.Lu.M-Radicals of Submodules In Modules.(1988).211-216.
4) D.G.Northcott. Lesson on Rings, Modules and Multiplicites, Cambridge university Press. 1968.
5) F.W. Anderson, K.P. Fuller. Rings and Categoris of Modules. 1974.
6) M.Gray. A radical Approach to Algebra. Addison Wesley, Reading Mass. 1970.
7) N. Bourbaki.Algebre Commutative, Chapters. 3,4, Hermann, Paris. 1961.
8) R. McCasland and M. Moore. On radicals of submodules of finitely generated modules. Canada. Math. Bull. Vol.29(1)(1986).37-39.
9) Z.El- Bast and P. Smith. Multiplication modules, Communi cation, Algebra, 16(4) (1988), 755-779.(4) (1988), 755-779.